

### **Department of Energy**

Richland Operations Office P.O. Box 550 Richland, Washington 99352

NOV 14 2013

14-AMRP-0041

Ms. J. A. Hedges, Program Manager Nuclear Waste Program State of Washington Department of Ecology 3100 Port of Benton Blvd. Richland, Washington 99354

Dear Ms. Hedges:

TRANSMITTAL OF APPROVED WASTE SITE RECLASSIFICATION FORMS AND SUPPORTING DOCUMENTATION FOR THE 100-D-62, 183-DR HEAD HOUSE SEPTIC TANK; 100-D-77, 183-DR WATER TREATMENT FACILITY; AND 100-D-83:1, 183-DR ACID ADDITION PIPELINE WASTE SITES, REVISION 0

Attached for your use are the approved Waste Site Reclassification Form Nos. 2013-077, 2013-078, and 2013-079 and supporting "Remaining Sites Verification Packages for the 100-D-62, 183-DR Head House Septic Tank; 100-D-77, 183-DR Water Treatment Facility; and 100-D-83:1, 183-DR Acid Addition Pipeline Waste Sites," Rev. 0. If you have questions, please contact me or your staff may contact Tom Post, of my staff, on (509) 376-3232.

Sincerely.

Mark S. French, Federal Project Director for the River Corridor Division

AMRP:TCP

Attachment

cc w/attach:

N. M. Menard, Ecology Administrative Record, H6-08

cc w/o attach:

R. D. Cantwell, WCH

S. L. Feaster, WCH

T. O. Howell, WCH

D. L. Plung, WCH

J. P. Shearer, CHPRC

| WASTE SITE RECLASSIFICATION FORM                                                                                                                                                              |                                                                                      |                                                                                    |                                                                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| Operable Unit: 100-DR-2                                                                                                                                                                       |                                                                                      | Control No.:                                                                       | 2013-077                                                                           |  |
| Waste Site Code(s)/Subsite Code(s): 1                                                                                                                                                         | 00-D-62                                                                              |                                                                                    |                                                                                    |  |
|                                                                                                                                                                                               |                                                                                      |                                                                                    | <u> </u>                                                                           |  |
| Reclassification Category: Interim                                                                                                                                                            |                                                                                      | _                                                                                  |                                                                                    |  |
| Reclassification Status: Closed C                                                                                                                                                             | Out 🛛                                                                                | No Action 📙                                                                        | Rejected 🔲                                                                         |  |
| RCRA Po                                                                                                                                                                                       | ostclosure 🔲                                                                         | Consolidated                                                                       | None 🗌                                                                             |  |
| Approvals Needed: DOE                                                                                                                                                                         | Ecology 🛛                                                                            | EPA 🗌                                                                              |                                                                                    |  |
| Description of current waste site cond                                                                                                                                                        | ition:                                                                               |                                                                                    |                                                                                    |  |
| The 100-D-62, 183-DR Head House Seplocated south of the former 183-DR Head and dispose site in the Explanation of Signecord of Decision, Hanford Site, Benton Seattle, Washington (EPA 2009). | I House. The 100-D-62 w<br>gnificant Differences for th<br>n County, Washington, U.S | aste site was identified as e 100 Area Remaining Site  B. Environmental Protection | an additional remove, treat,<br>es Interim Remedial Action<br>n Agency, Region 10, |  |
| Due to their close proximity, remediation<br>Treatment Facility; and 100-D-83:1, 183-                                                                                                         |                                                                                      |                                                                                    |                                                                                    |  |

Remedial action at the 100-D-62 waste site was conducted on May 2 and 3, 2011. A reinforced concrete septic tank, associated concrete piping, and soil were removed and staged at the SPAs. Approximately 793 bank cubic meters (BCM) (1,037 bank cubic yards [BCY]) of soil and debris were loaded out on July 12 and 13, 2011, for disposal at the Environmental Restoration Disposal Facility (ERDF).

pile areas (SPAs) received waste from the 100-D-62, 100-D-77, and 100-D-83:1 remediation. Sampling and data evaluation for three of these five SPAs (North SPA 1, North SPA 2, and North SPA 3) was conducted with the 100-D-62, 100-D-77, and 100-D-83:1 waste sites cleanup verification. Sampling and data evaluation of the other two SPAs was documented in the *Remaining Sites Verification Package for the 100-D-50:6, 183-DR Clearwell Pipelines*, Attachment to

Waste Site Reclassification Form 2013-011, Rev. 0, Washington Closure Hanford, Richland, Washington.

Remedial action at the co-located 100-D-77 and 100-D-83:1 waste sites was performed from May 3, 2011, through July 13, 2011, and extended to 4.6 m (15 ft) below ground surface (bgs). A total of 7,103 BCM (9,290 BCY) of contaminated soil and debris was removed and staged at the SPA locations. Loadout of waste material with subsequent disposal at ERDF was conducted between July 13 and October 18, 2011. Due to elevated mercury measured in excavation area in-process samples, a second-tier excavation design was developed and additional remediation was performed from December 8, 2011, through January 16, 2012. Approximately 7,126 BCM (9,320 BCY) of contaminated soil and debris was removed and staged prior to disposal at ERDF. The second-tier excavation depth extended to 9.5 m (31 ft) bgs.

A verification sample design for the combined 100-D-62, 100-D-77, and 100-D-83:1 waste site remediation was developed. Verification samples for the excavation area were collected on September 4 and 18, 2012. Due to elevated mercury in the excavation, additional remediation was performed on March 13, 2013. Approximately 76 BCM (100 BCY) of contaminated soil and debris was removed from the excavation and staged prior to disposal at ERDF. Final waste loadout of the SPAs was completed on April 1, 2013. Replacement verification samples in the excavation area were collected on March 15, 2013. Two revisions to the sample design were approved and included relocating five SPA sample locations and adding focused samples in the 100-D-83:1 pipelines footprint. The remaining verification samples were collected on April 8 and 29, 2013, and May 29, 2013.

Remediation, verification sampling, and comparison of residual contaminant concentrations against cleanup levels have been performed in accordance with remedial action objectives and goals established by the *Interim Action Record of Decision for the 100-BC-1*, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1,

Page 1 of 2 A-6006-136 (REV 0)

| WASTE SITE RECLASSIFICATION FORM                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Operable Unit: 100-DR-2                                                                                                                                                                                                                                                                                                                                        | Control No.: 2013-077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Waste Site Code(s)/Subsite Code(s): 100-D-62                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Sites ROD), U.S. Environmental Protection Agenc<br>Design Report/Remedial Action Work Plan for the<br>U.S. Department of Energy, Richland Operations (<br>involved (1) excavating the site to the extent required                                                                                                                                              | perable Units, Hanford Site, Benton County, Washington (Remaining y, Region 10, Seattle, Washington (EPA 1999) and the Remedial 100 Areas (100 Area RDR/RAWP), DOE/RL-97-17, Rev. 6, Office, Richland, Washington (DOE-RL 2009). The selected action red to meet specified soil cleanup levels, (2) disposing of contaminated through verification sampling that cleanup goals have been achieved, erim Closed Out.                                                                                                                                                                                                                                                  |  |  |
| Basis for reclassification:                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Out. The current site conditions achieve the reme established in the Remaining Sites ROD (EPA 199 verification sampling show that residual contaminarural-residential scenario) and allow for unrestricte Contamination from the 100-D-62, 100-D-77, and 4.6 m [15 ft] bgs) has been removed. Therefore, in the deep zone of the site are not required. The ba | sampling results support a reclassification of this site to Interim Closed dial action objectives and the corresponding remedial action goals (29) and the 100 Area RDR/RAWP (DOE-RL 2009). The results of anticoncentrations do not preclude any future uses (as bounded by the duse of shallow zone soils (i.e., surface to 4.6 m [15 ft] deep). 100-D-83:1 waste sites that extended into the deep zone (greater than institutional controls to prevent uncontrolled drilling or excavation into sis for reclassification is described in detail in the Remaining Sites and House Septic Tank; 100-D-77, 183-DR Water Treatment Facility; Waste Sites (attached). |  |  |
| Regulator comments:                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Waste Site Controls:                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                | nal Controls: Yes No O&M Requirements: Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| If any of the Waste Site Controls are checked Yes, Decision, TSD Closure Letter, or other relevant do                                                                                                                                                                                                                                                          | specify control requirements including reference to the Record of cuments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| J. P. Neath  DOE Federal Project Director (printed)                                                                                                                                                                                                                                                                                                            | 10   15   13   Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| ·                                                                                                                                                                                                                                                                                                                                                              | $\longrightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| N. Menard                                                                                                                                                                                                                                                                                                                                                      | 1 line M. Menard 10/16/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Ecology Project Manager (printed)                                                                                                                                                                                                                                                                                                                              | Signature Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| N/A                                                                                                                                                                                                                                                                                                                                                            | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| EPA Project Manager (printed)                                                                                                                                                                                                                                                                                                                                  | Signature Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

| Operable Unit: 100-DR-2      |                               | Control No.:                | 2013-078   |
|------------------------------|-------------------------------|-----------------------------|------------|
| Waste Site Code(s)/Subsite   | Code(s): 100-D-77             |                             | 20.0 0.0   |
| Reclassification Category:   | Interim ⊠ Final □             | 1                           |            |
| Reclassification Status:     | Closed Out   RCRA Postclosure | No Action ☐  Consolidated ☐ | Rejected 🗌 |
| Approvals Needed: DOI        | E ⊠ Ecology ⊠                 | EPA 🗍                       | None _     |
| Description of current waste | site condition:               |                             |            |

The 100-D-77, 183-DR Acid Facility, 183-DR Head House, 183-DR Flocculation Basins, 183-DR Sedimentation Basins, and 183-DR Filter Plant waste site encompassed the former 183-DR Water Treatment Facility supporting the 105-DR Reactor. The 100-D-77 waste site was identified as a candidate site for confirmatory sampling in the *Explanation of Significant Differences for the 100 Area Remaining Sites Interim Remedial Action Record of Decision, Hanford Site, Benton County, Washington*, U.S. Environmental Protection Agency, Region 10, Seattle, Washington (EPA 2009). Portions of the 100-D-77 waste site including the 183-DR Acid Facility, 183-DR Head House, 152C1-DR Substation, and the sample room of the 183-DR Filter Plant were recommended for remediation without confirmatory sampling due to specific operational use.

Due to their close proximity, remediation of the 100-D-62, 183-DR Head House Septic Tank; 100-D-77, 183-DR Water Treatment Facility; and 100-D-83:1, 183-DR Acid Addition Pipelines waste sites was combined. A total of five staging pile areas (SPAs) received waste from the 100-D-62, 100-D-77, and 100-D-83:1 remediation. Sampling and data evaluation for three of these five SPAs (North SPA 1, North SPA 2, and North SPA 3) was conducted with the 100-D-62, 100-D-77, and 100-D-83:1 waste sites cleanup verification. Sampling and data evaluation of the other two SPAs was documented in the *Remaining Sites Verification Package for the 100-D-50:6, 183-DR Clearwell Pipelines*, Attachment to Waste Site Reclassification Form 2013-011, Rev. 0, Washington Closure Hanford, Richland, Washington.

Remedial action at the 100-D-62 waste site was conducted on May 2 and 3, 2011. A reinforced concrete septic tank, associated concrete piping, and soil were removed and staged at the SPAs. Approximately 793 bank cubic meters (BCM) (1,037 bank cubic yards [BCY]) of soil and debris were loaded out on July 12 and 13, 2011, for disposal at the Environmental Restoration Disposal Facility (ERDF).

Remedial action at the co-located 100-D-77 and 100-D-83:1 waste sites was performed from May 3 through July 13, 2011, and extended to 4.6 m (15 ft) below ground surface (bgs). A total of 7,103 BCM (9,290 BCY) of contaminated soil and debris was removed and staged at the SPA locations. Loadout of waste material with subsequent disposal at ERDF was conducted between July 13 and October 18, 2011. Due to elevated mercury measured in excavation area in-process samples, a second-tier excavation design was developed and additional remediation was performed from December 8, 2011, through January 16, 2012. Approximately 7,126 BCM (9,320 BCY) of contaminated soil and debris was removed and staged prior to disposal at ERDF. The second-tier excavation depth extended to 9.5 m (31 ft) bgs.

A verification sample design for the combined 100-D-62, 100-D-77, and 100-D-83:1 waste site remediation was developed. Verification samples for the excavation area were collected on September 4 and 18, 2012. Due to elevated mercury in the excavation, additional remediation was performed on March 13, 2013. Approximately 76 BCM (100 BCY) of contaminated soil and debris were removed from the excavation and staged prior to disposal at ERDF. Final waste loadout of the SPAs was completed on April 1, 2013. Replacement verification samples in the excavation area were collected on March 15, 2013. Two revisions to the sample design were approved and included relocating five SPA sample locations and adding focused samples in the 100-D-83:1 pipelines footprint. The remaining verification samples were collected on April 8 and 29 and May 29, 2013.

|                                                                                                                                                  | WASTE SITE RECLASSIFICATION FORM                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| Operable Unit:                                                                                                                                   | 100-DR-2                                                                                                                                                                                                                                          | Control No.: 2013-078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                 |  |  |
| -                                                                                                                                                | e(s)/Subsite Code(s): 100-D-77                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |  |  |
| been performed in Decision for the 100-KR-2, 100-III. Sites ROD), U.S. Design Report/R U.S. Department involved (1) excapation materials.        | n accordance with remedial action 100-BC-1, 100-BC-2, 100-DR-1, 100-BC-2, 100-DR-1, 100-LCW-3 Operation Agency, emedial Action Work Plan for the 1 of Energy, Richland Operations Operations the site to the extent require                       | of residual contaminant concentrations against cle<br>objectives and goals established by the Interim Ac<br>00-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2<br>rable Units, Hanford Site, Benton County, Washing,<br>Region 10, Seattle, Washington (EPA 1999) and to<br>00 Areas (100 Area RDR/RAWP), DOE/RL-97-17,<br>ffice, Richland, Washington (DOE-RL 2009). The sed to meet specified soil cleanup levels, (2) disposing<br>rough verification sampling that cleanup goals have<br>rim Closed Out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ton Hecord of 2, 100-KR-1, ton (Remaining he Remedial Rev. 6, selected action ag of contaminated  |  |  |
| Basis for reclas                                                                                                                                 | sification:                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |  |  |
| Out. The current established in the verification samp rural-residential: Contamination from 1.6 m [15 ft] bgs the deep zone of Verification Pack | t site conditions achieve the remeder Remaining Sites ROD (EPA 1999) Iling show that residual contaminar scenario) and allow for unrestricted om the 100-D-62, 100-D-77, and 1 has been removed. Therefore, in the site are not required. The bas | campling results support a reclassification of this siting action objectives and the corresponding remedial and the 100 Area RDR/RAWP (DOE-RL 2009). In the concentrations do not preclude any future uses (all use of shallow-zone soils (i.e., surface to 4.6 m [1:00-D-83:1 waste sites that extended into the deep stitutional controls to prevent uncontrolled drilling of the site of the stitutional controls to prevent uncontrolled drilling of the site of the stitutional controls to prevent uncontrolled drilling the stitutional controlled drilling the stitutional controls the stitutional controls | The results of as bounded by the 5 ft] deep). zone (greater than r excavation into emaining Sites |  |  |
| Regulator com                                                                                                                                    |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |  |  |
| negulator com                                                                                                                                    | nents.                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |  |  |
| Waste Site Con<br>Engineered Control<br>If any of the Wast<br>Decision, TSD Co                                                                   | ols:  Yes No Institution                                                                                                                                                                                                                          | nal Controls: Yes No O&M Requirements specify control requirements including reference to cuments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |  |  |
| J. P. Neath<br>DOE Fe                                                                                                                            | deral Project Director (printed)                                                                                                                                                                                                                  | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/15/13<br>Date                                                                                  |  |  |
| N. Menard<br>Ecolo                                                                                                                               | gy Project Manager (printed)                                                                                                                                                                                                                      | Signature Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date                                                                                              |  |  |
|                                                                                                                                                  |                                                                                                                                                                                                                                                   | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |  |  |
| N/A<br>EPA                                                                                                                                       | A Project Manager (printed)                                                                                                                                                                                                                       | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date                                                                                              |  |  |
| 1 -,                                                                                                                                             | )                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                   |  |  |

| WASTE SITE RECLASSIFICATION FORM               |                   |              |          |  |
|------------------------------------------------|-------------------|--------------|----------|--|
| Operable Unit: 100-DR-1                        |                   | Control No.: | 2013-079 |  |
| Waste Site Code(s)/Subsite Code(s): 100-D-83:1 |                   |              |          |  |
| Reclassification Category:                     | Interim 🛛 Final 🗌 |              |          |  |
| Reclassification Status:                       | Closed Out 🛛      | No Action    | Rejected |  |
|                                                | RCRA Postclosure  | Consolidated | None     |  |
| Approvals Needed: DOE                          | ⊠ Ecology ⊠       | EPA 🗌        |          |  |
| Description of current waste site condition:   |                   |              |          |  |

The 100-D-83:1, 183-DR Acid Addition Pipelines subsite was identified as a candidate site for confirmatory sampling in the Explanation of Significant Differences for the 100 Area Remaining Sites Interim Remedial Action Record of Decision, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Region 10, Seattle, Washington (EPA 2009). The 100-D-83:1 pipelines were recommended for remediation without confirmatory sampling due to historical and process information.

Due to their close proximity, remediation of the 100-D-62, 183-DR Head House Septic Tank; 100-D-77, 183-DR Water Treatment Facility; and 100-D-83:1, 183-DR Acid Addition Pipelines waste sites were combined. A total of five staging pile areas (SPAs) received waste from the 100-D-62, 100-D-77, and 100-D-83:1 remediation. Sampling and data evaluation for three of these five SPAs (North SPA 1, North SPA 2, and North SPA 3) was conducted with the 100-D-62, 100-D-77, and 100-D-83:1 waste sites cleanup verification. Sampling and data evaluation of the other two SPAs was documented in the *Remaining Sites Verification Package for the 100-D-50:6, 183-DR Clearwell Pipelines*, Attachment to Waste Site Reclassification Form 2013-011, Rev. 0, Washington Closure Hanford, Richland, Washington.

Remedial action at the 100-D-62 waste site was conducted on May 2 and 3, 2011. A reinforced concrete septic tank, associated concrete piping, and soil were removed and staged at the SPAs. Approximately 793 bank cubic meters (BCM) (1,037 bank cubic yards [BCY]) of soil and debris were loaded out on July 12 and 13, 2011, for disposal at the Environmental Restoration Disposal Facility (ERDF).

Remedial action at the co-located 100-D-77 and 100-D-83:1 waste sites was performed from May 3 through July 13, 2011, and extended to 4.6 m (15 ft) below ground surface (bgs). A total of 7,103 BCM (9,290 BCY) of contaminated soil and debris was removed and staged at the SPA locations. Loadout of waste material with subsequent disposal at ERDF was conducted between July 13 and October 18, 2011. Due to elevated mercury measured in excavation area in-process samples, a second tier excavation design was developed and additional remediation was performed from December 8, 2011 through January 16, 2012. Approximately 7,126 BCM (9,320 BCY) of contaminated soil and debris were removed and staged prior to disposal at ERDF. The second tier excavation depth extended to 9.5 m (31 ft) bgs.

A verification sample design for the combined 100-D-62, 100-D-77, and 100-D-83:1 waste site remediation was developed. Verification samples for the excavation area were collected on September 4 and 18, 2012. Due to elevated mercury in the excavation, additional remediation was performed on March 13, 2013. Approximately 76 BCM (100 BCY) of contaminated soil and debris were removed from the excavation and staged prior to disposal at ERDF. Final waste loadout of the SPAs was completed on April 1, 2013. Replacement verification samples in the excavation area were collected on March 15, 2013. Two revisions to the sample design were approved and included relocating five SPA sample locations and adding focused samples in the 100-D-83:1 pipelines footprint. The remaining verification samples were collected on April 8 and 29, 2013, and May 29, 2013.

Remediation, verification sampling, and comparison of residual contaminant concentrations against cleanup levels have been performed in accordance with remedial action objectives and goals established by the *Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-K* 

Page 1 of 2 A-6006-136 (REV 0)

| WASTE SITE RECLASSIFICATION FORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operable Unit: 100-DR-1 Control No.: 2013-079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Waste Site Code(s)/Subsite Code(s): 100-D-83:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington (Remaining Sites ROD), U.S. Environmental Protection Agency, Region 10, Seattle, Washington (EPA 1999) and the Remedial Design Report/Remedial Action Work Plan for the 100 Areas (100 Area RDR/RAWP), DOE/RL-97-17, Rev. 6, U.S. Department of Energy, Richland Operations Office, Richland, Washington (DOE-RL 2009). The selected action involved: (1) excavating the site to the extent required to meet specified soil cleanup levels, (2) disposing of contaminated excavation materials at ERDF, (3) demonstrating through verification sampling that cleanup goals have been achieved, and (4) proposing the site for reclassification to Interim Closed Out.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Basis for reclassification:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD (EPA 1999) and the 100 Area RDR/RAWP (DOE-RL 2009). The results of verification sampling show that residual contaminant concentrations do not preclude any future uses (as bounded by the rural-residential scenario) and allow for unrestricted use of shallow zone soils (i.e., surface to 4.6 m [15 ft] deep). Contamination from the 100-D-62, 100-D-77, and 100-D-83:1 waste sites that extended into the deep zone (greater than 4.6 m [15 ft] bgs) has been removed. Therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone of the site are not required. The basis for reclassification is described in detail in the <i>Remaining Sites Verification Package for the 100-D-62, 183-DR Head House Septic Tank; 100-D-77, 183-DR Water Treatment Facility; and 100-D-83:1, 183-DR Acid Addition Pipelines Waste Sites (attached).</i> |
| Regulator comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Waste Site Controls:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Engineered Controls: Yes No Institutional Controls: Yes No O&M Requirements: Yes No If any of the Waste Site Controls are checked Yes, specify control requirements including reference to the Record of Decision, TSD Closure Letter, or other relevant documents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| J. P. Neath  DOE Federal Project Director (printed)  N. Menard  N. Menard  Jo/15/13  Date  16/16/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ecology Project Manager (printed)  Signature  Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EPA Project Manager (printed) Signature Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# REMAINING SITES VERIFICATION PACKAGE FOR THE 100-D-62, 183-DR HEAD HOUSE SEPTIC TANK; 100-D-77, 183-DR WATER TREATMENT FACILITY; AND 100-D-83:1, 183-DR ACID ADDITION PIPELINE WASTE SITES

Attachment to Waste Site Reclassification Forms 2013-077, 2013-078, and 2013-079

October 2013

# REMAINING SITES VERIFICATION PACKAGE FOR THE 100-D-62, 183-DR HEAD HOUSE SEPTIC TANK; 100-D-77, 183-DR WATER TREATMENT FACILITY; AND 100-D-83:1, 183-DR ACID ADDITION PIPELINE WASTE SITES

#### **EXECUTIVE SUMMARY**

The 100-D-62, 183-DR Head House Septic Tank and 100-D-77, 183-DR Water Treatment Facility, located within the 100-DR-2 Operable Unit, and the 100-D-83:1, 183-DR Acid Addition Pipelines Waste Sites, located within the 100-DR-1 Operable Unit, underwent a combined remedial action due to their close proximity. The three waste sites were also combined for the purpose of verification sampling. The 100-D-62 waste site includes the septic tank, drainfield, and associated piping located south of the former 183-DR Head House. The 100-D-77 waste site includes the former 183-DR Head House, 183-DR Acid Facility, 183-DR Flocculation Basins, 183-DR Sedimentation Basins, and the 183-DR Filter Building. The 100-D-83:1 waste site was located north of the 183-DR Head House and included 35 pipeline segments that transported low-pressure steam, sulfuric acid, and lime slurry. Each of these waste sites was recommended for remedial action without confirmatory sampling (WCH 2008a, 2008b, 2010).

A total of five staging pile areas (SPAs) received waste from the 100-D-62, 100-D-77, and 100-D-83:1 remediation. Sampling and data evaluation for three of the five SPAs (North SPA 1, North SPA 2, and North SPA 3) were conducted with the 100-D-62, 100-D-77, and 100-D-83:1 waste sites cleanup verification. Sampling and data evaluation of the other two SPAs were performed and documented with the 100-D-50:6, 185-DR Clearwell Drain Pipelines cleanup verification (WCH 2012c, 2013d).

Remedial action at the 100-D-62 waste site was conducted on May 2 and 3, 2011. A reinforced concrete septic tank, associated concrete piping, and soil were removed as part of the remediation and staged at the SPAs. Approximately 793 bank cubic meters (BCM) (1,037 bank cubic yards [BCY]) of soil and debris were loaded out on July 12 and 13, 2011, for disposal at the Environmental Restoration Disposal Facility (ERDF).

Remedial action at the 100-D-77 waste site began on May 3, 2011, and continued through July 13, 2011. The 100-D-83:1 pipelines were fully removed during the 100-D-77 remediation. The tier 1 remediation continued to approximately 4.6 m (15 ft) below ground surface (bgs). Approximately 7,103 BCM (9,290 BCY) of contaminated soil and debris was removed and staged at the SPAs prior to disposal at the ERDF.

A 20-m (65.6-ft)-long, concrete-encased section of the 100-D-56:2, South Portion of 100-D-56 pipelines had been left in place during the previous 100-D-56 pipeline remediation at the entry of the pipeline into the 183-DR Head House. This remaining portion of 100-D-56:2 was removed during the 100-D-77 remediation. The 100-D-56:2 subsite consisted of the chemical supply lines (sodium dichromate and sodium silicate) that exited the west side of the

185-D Building and extended to the 183-DR Head House. Loadout and disposal of 100-D-77 and 100-D-83:1 waste, including material from the remaining 100-D-56:2 pipelines, was conducted between July 13 and October 18, 2011.

At the completion of the tier 1 remediation, in-process soil samples were collected to determine if additional remediation of the waste site was necessary. The in-process sample data showed mercury concentrations exceeding the direct exposure cleanup level. Therefore, a second tier of excavation was designed and implemented.

Tier 2 remediation began on December 8, 2011, and continued through January 16, 2012. The excavation extended up to 9.5 m (31 ft) bgs. Approximately 7,126 BCM (9,320 BCY) of contaminated soil and debris was removed and staged at the SPAs. Loadout and disposal of the tier 2 waste to ERDF began on December 14, 2011.

Verification samples of the 100-D-62, 100-D-77, and 100-D-83:1 excavation area were collected on September 18, 2012, per the *Work Instruction for Verification Sampling of the 100-D-77, 183-DR Water Treatment Facility;100-D-62, 183-DR Head House Septic Tank; and 100-D-83:1, 183-DR Acid Addition Pipelines Waste Sites* (VWI) (WCH 2013e). An additional verification sample at the former 183-DR Filter Building sample room (100-D-77) was collected on September 4, 2012, per the *Work Instruction for Verification Sampling of the 100-D-50:6, 183-DR Clearwell Drain Pipelines Waste Site* (WCH 2012c). Mercury above direct exposure remedial action goals (RAGs) was measured at one sample location (EXC-4). Benzo(a)pyrene was measured above direct exposure RAGs at two locations (EXC-3 and FS-1) at the west end of the excavation. Elevated benzo(a)pyrene and other polycyclic aromatic hydrocarbons (PAH) results were attributed to residual asphalt in the excavation. Demolition and removal of an asphalt road at the west end of the excavation had been conducted during previous deactivation, decommissioning, and demolition (D4) activities and prior to remediation.

In agreement with the Washington State Department of Ecology (WCH 2012b), additional soil was removed at and around the sample location with elevated mercury (EXC-4) on March 15, 2013. An additional 76 BCM (100 BCY) of contaminated soil and debris was removed from the excavation and staged prior to disposal at ERDF. The area in which additional removal was performed also included the FS-1 focused sample location. After removal, replacement verification samples were collected on March 15, 2013, at both the EXC-4 and FS-1 locations. The agreement for additional remediation included disposition of the benzo(a)pyrene result at location EXC-3 as cross-contamination with asphalt (WCH 2012b).

Verification sampling of the three SPAs, North SPA 1, North SPA 2, and North SPA 3, was initiated on April 8, 2013. Based on field observations, it was determined that the boundary used for the North SPA 3 area in the VWI was incorrect and required modification. New, randomly determined coordinates were identified for the five North SPA 3 verification sample locations using an updated boundary and the revised VWI (Rev. 1) was approved. The final five verification samples from North SPA 3 were collected April 29, 2013.

Three additional focused samples were approved in Rev. 2 of the sample design (WCH 2013e) to specifically address the remediation of 100-D-83:1 pipelines. The 100-D-83:1 waste site was fully removed within the 100-D-77 excavation. Verification samples were collected from these three locations on May 29, 2013.

The verification sampling results indicate that the waste removal action achieved compliance with the remedial action objectives (RAOs) and RAGs established in the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (RDR/RAWP) (DOE-RL 2009b) and the *Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington (Remaining Sites ROD) (EPA 1999).* 

A summary of the cleanup evaluation for the results from verification sampling against the applicable criteria is presented in Table ES-1. The results of verification sampling are used to make reclassification decisions for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites in accordance with the TPA-MP-14 procedure in the *Tri-Party Agreement Handbook Management Procedures* (DOE-RL 2011).

Table ES-1. Summary of Remedial Action Goals for the 100-D-62, 100-D-77, and 100-D-83:1 Waste Sites. (2 Pages)

| Regulatory<br>Requirement               | Remedial Action Goals                                                             | Results                                                                                                                       | Remedial<br>Action<br>Objectives<br>Attained? |
|-----------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Direct Exposure –<br>Radionuclides      | Attain dose rate of <15 mrem/yr above background for 1,000 years.                 | Radionuclides were not COPCs for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites.                                          | NA                                            |
| Direct Exposure –<br>Nonradionuclides   | Attain individual COPC RAGs.                                                      | All individual COPC concentrations in shallow zone decision units are below the direct exposure criteria.                     | Yes                                           |
| Risk Requirements –<br>Nonradionuclides | Attain a hazard quotient of <1 for all individual noncarcinogens.                 | The hazard quotient determined from shallow zone decision units is <1.                                                        |                                               |
|                                         | Attain a cumulative hazard quotient of <1 for noncarcinogens.                     | The cumulative hazard quotient determined from shallow zone decision units $(2.1 \times 10^{-1})$ is $<1$ .                   |                                               |
|                                         | Attain an excess cancer risk of <1 x 10 <sup>-6</sup> for individual carcinogens. | The excess cancer risk for carcinogens determined from shallow zone decision units is <1 x 10 <sup>-6</sup> .                 | Yes                                           |
|                                         | Attain a cumulative excess cancer risk of <1 x 10 <sup>-5</sup> for carcinogens.  | The total excess cancer risk determined from shallow zone decision units (1.7 x 10 <sup>-6</sup> ) is <1 x 10 <sup>-5</sup> . |                                               |

Table ES-1. Summary of Remedial Action Goals for the 100-D-62, 100-D-77, and 100-D-83:1 Waste Sites. (2 Pages)

| Regulatory<br>Requirement                             | Remedial Action Goals                                                                                                                                                   | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remedial<br>Action<br>Objectives<br>Attained? |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Groundwater/River<br>Protection –<br>Radionuclides    | Attain single-COPC groundwater and river protection RAGs.                                                                                                               | Radionuclides were not COPCs for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites.                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
|                                                       | Attain national primary drinking water standards <sup>a</sup> : 4 mrem/yr (beta/gamma) dose rate to target receptor/organs.                                             | Radionuclides were not COPCs for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites.                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
|                                                       | Meet drinking water standards<br>for alpha emitters: the most<br>stringent of 15 pCi/L MCL or<br>1/25th of the derived concentration<br>guides from DOE Order 5400.5 b. | Radionuclides were not COPCs for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites.                                                                                                                                                                                                                                                                                                                                                                                              | NA                                            |
|                                                       | Meet total uranium standard of 30 μg/L (21.2 pCi/L) °.                                                                                                                  | Radionuclides were not COPCs for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites.                                                                                                                                                                                                                                                                                                                                                                                              |                                               |
| Groundwater/River<br>Protection –<br>Nonradionuclides | Attain individual nonradionuclide groundwater and river cleanup requirements.                                                                                           | Residual concentrations of vanadium, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene exceed soil RAGs for groundwater and/or river protection.  However, based on RESRAD modeling discussed in Appendix C of the 100 Area RDR/RAWP (DOE-RL 2009b), it is predicted that these constituents will not reach groundwater (and thus the Columbia River) within 1,000 years <sup>d</sup> . | Yes                                           |

<sup>&</sup>lt;sup>a</sup> "National Primary Drinking Water Regulations" (40 Code of Federal Regulations 141).

COPC = contaminant of potential concern

RDR/RAWP= Remedial Design Report/Remedial Action Work Plan

MCL = maximum contaminant level

RESRAD = RESidual RADioactivity (dose model)

RAG = remedial action goal

In accordance with this evaluation, the verification sampling results support a reclassification of this subsite to Interim Closed Out. The current site conditions achieve the RAOs and the corresponding RAGs of the RDR/RAWP (DOE-RL 2009b) and the Remaining Sites ROD (EPA 1999). The results also demonstrate that residual contaminant concentrations support

<sup>&</sup>lt;sup>b</sup> Radiation Protection of the Public and the Environment (DOE Order 5400.5).

<sup>&</sup>lt;sup>c</sup> Based on the isotopic distribution of uranium in the 100 Area, the 30 μg/L MCL corresponds to 21.2 pCi/L. Concentration-to-activity calculations are documented in *Calculation of Total Uranium Activity Corresponding to a Maximum Contaminant Level for Total Uranium of 30 Micrograms per Liter in Groundwater* (BHI 2001).

Based on RESRAD modeling discussed in Appendix C of the RDR/RAWP (DOE-RL 2009b), the residual concentrations of vanadium, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd) are not predicted to migrate vertically within 1,000 years (based on the lowest distribution coefficient of the contaminants exceeding RAGs, chrysene, with a distribution coefficient value of 200 mL/g). The distance to groundwater from the bottom of the excavation area is 16 m (52.5 ft). Therefore, residual concentrations of these constituents are predicted to be protective of groundwater and the Columbia River.

unrestricted future use of shallow zone soil (surface to 4.6 m [15 ft] bgs), and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River. Contamination from the 100-D-62, 100-D-77, and 100-D-83:1 waste sites that extended into the deep zone (greater than 4.6 m [15 ft] bgs) has been removed; therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone of the site are not required.

Soil cleanup levels were established in the Remaining Sites ROD (EPA 1999) based in part on a limited ecological risk assessment. Although not required by the Remaining Sites ROD, a comparison against ecological risk screening levels has been made for the 100-D-62, 100-D-77, and 100-D-83:1 waste site contaminants of potential concern and other constituents (Appendix A). The higher of the maximum or statistical values were considered for comparison. Ecological screening levels from Washington Administrative Code 173-340 were exceeded for boron, mercury, and vanadium. The U.S. Environmental Protection Agency's ecological soil screening levels were exceeded for antimony, manganese, vanadium, zinc, and high molecular weight PAH. Exceedance of screening values is intended to trigger additional evaluation and does not necessarily indicate the existence of risk to ecological receptors. Because concentrations of antimony, manganese, mercury, and zinc are below Hanford Site or Washington State background values (note that state background values are only used when Hanford Site background values are not available), it is believed that the presence of these constituents does not pose a risk to ecological receptors. All exceedances will be evaluated in the context of additional lines of evidence for risk to ecological receptors as part of the final closeout decision for this site.

# REMAINING SITES VERIFICATION PACKAGE FOR THE 100-D-62, 183-DR HEAD HOUSE SEPTIC TANK; 100-D-77, 183-DR WATER TREATMENT FACILITY; AND 100-D-83:1, 183-DR ACID ADDITION PIPELINE WASTE SITES

#### STATEMENT OF PROTECTIVENESS

The 100-D-62, 100-D-77, and 100-D-83:1 waste sites verification sampling data, site evaluations, and supporting documentation demonstrate that this site meets the objectives established in the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (RDR/RAWP) (DOE-RL 2009b) and the *Interim Action Record of Decision for the 100-BC-1*, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington (Remaining Sites ROD) (EPA 1999). These results show that residual soil concentrations support future land uses that can be represented (or bounded) by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations support unrestricted future use of shallow zone soil (i.e., surface to 4.6 m [15 ft]), and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River. Contamination from the 100-D-62, 100-D-77, and 100-D-83:1 waste sites that extended into the deep zone has been removed; therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone of the site are not required.

Soil cleanup levels were established in the Remaining Sites ROD (EPA 1999) based in part on a limited ecological risk assessment. Although not required by the Remaining Sites ROD, a comparison against ecological risk screening levels has been made for the 100-D-62, 100-D-77, and 100-D-83:1 waste site contaminants of potential concern (COPCs) and other constituents (Appendix A). The higher of the maximum or statistical values were considered for comparison. Ecological screening levels from Washington Administrative Code (WAC) 173-340 were exceeded for boron, mercury, and vanadium. The U.S. Environmental Protection Agency's (EPA's) ecological soil screening levels were exceeded for antimony, manganese, vanadium, zinc, and high molecular weight polyaromatic hydrocarbons (PAH). Exceedance of screening values is intended to trigger additional evaluation and does not necessarily indicate the existence of risk to ecological receptors. Because concentrations of antimony, manganese, mercury, and zinc are below Hanford Site or Washington State background values (note that state background values are only used when Hanford Site background values are not available), it is believed that the presence of these constituents does not pose a risk to ecological receptors. All exceedances will be evaluated in the context of additional lines of evidence for risk to ecological receptors as part of the final closeout decision for this site.

#### GENERAL SITE INFORMATION AND BACKGROUND

The 100-D-62, 100-D-77, and 100-D-83:1 waste sites are located west of the 105-DR Reactor (Figure 1). The 100-D-62 and 100-D-77 waste sites are within the 100-DR-2 Operable Unit of the Hanford Site. The 100-D-83:1 subsite is within the 100-DR-1 Operable Unit of the Hanford Site.

#### 100-D-62, 183-DR Head House Septic Tank

The 100-D-62, 183-DR Head House septic tank waste site includes the septic tank, drainfield, and associated piping. The septic tank was located approximately 15.2 m (50 ft) south of the 183-DR Head House. The drainfield pipeline extended 6.1 m (20 ft) from the southern end of the septic tank. The overall dimensions of the tile field measured 8.2 m (27 ft) long by 4.3 m (14 ft) wide. The septic system received sanitary sewage from the 183-DR Head House. The entire 183-DR Water Treatment Facility was a nonradiological area; therefore, the 100-D-62 septic system waste site was not considered radiologically contaminated.

### 100-D-77, 183-DR Water Treatment Facility

The 100-D-77 waste site is the former 183-DR Reactor Water Treatment Facility and is located approximately 350 m (1,150 ft) west of the 105-DR Reactor. The site is immediately west of the 183-DR clearwells. All facilities in the waste site were demolished to grade in 1978. The 100-D-77 waste site includes the former 183-DR Head House, train shed, 183-DR Filter Building, 183-DR Acid Facility, 183-DR Flocculation Basins, and 183-DR Sedimentation Basins. The site also includes the former 152C1-DR substation that had been located on the north side of the 183-DR Head House.

#### History

The 183-DR Water Treatment Facility chemically treated and filtered raw Columbia River water prior to use of the water to cool 105-DR Reactor components (Figures 2 and 3). The 183-DR Water Treatment Facility was constructed in 1950 and demolished in 1978. Debris from the facility deactivation, decontamination, decommissioning, and demolition (D4) was buried in the sedimentation basins (WHC 1991). Of primary concern was the use of sulfuric acid and sodium dichromate. Sulfuric acid, potentially containing impurities such as lead and mercury, was added to raw river water prior to entry into the flocculation basins. Sodium dichromate was added as the final water treatment step in the sample room located on the east side of the 183-DR Filter Building.

Figure 1. Overall Site Location of the 100-D-62, 100-D-77, and 100-D-83:1 Waste Sites.





Figure 2. Historical Aerial Photograph of the 183-DR Water Treatment Facility.

Figure 3. Historical Aerial Photograph of the 183-DR Water Treatment Facility Showing Location of the Acid Facility and the Filter Building Sample Room (1966).



As depicted in Figure 4, the 183-DR Acid Facility was located to the north of the 183-DR Head House and contained above-grade acid-holding tanks and transfer units. A car spot was used for unloading sulfuric acid from railcars. The acid was then transferred to two above-grade acid storage tanks using two acid pumps located directly northeast of the car spot. From the storage tanks, acid was transferred to an elevated acid head tank and finally to the mixing flume of the flocculation basin. A pipe trench was also located between the two acid storage tanks. There was an acid trap at the north end of the trench while the south end of the trench extended approximately 38 m (125 ft) to meet the 183-DR Head House at the northeast end where the pipes enter the building. Two drywells and a sump were located near the car spot and acid storage tank.

The 152C1-DR substation was located southeast of the acid facility at the northeast side of the 183-DR Head House (Figure 4). There were two 225-KVA transformers on a concrete pad located at the southern end of the substation footprint. The transformers were located next to each other in an east-west orientation near the southern boundary. The structure and transformers were removed during previous D4 activities.

The 183-DR Head House was the westernmost building of the water treatment facility and served as a receiving, storage, and transfer point for sodium dichromate solutions (Figure 5). The building was 34 m by 24 m (110 ft by 80 ft), had three floors and a basement, and supplied an appropriate mixture of chemicals to provide the desired treated water to the 105-DR Reactor. Other dry chemicals such as lime, sodium silicate, and ferric sulfate were received by railcar at the adjacent train shed. Outside the building were two chemical storage silos measuring 15 m (48 ft) in height and 2.4 m (8 ft) in diameter.

The 183-DR Head House received 10% sodium dichromate solution from the 185-D Building through a 7.6-cm (3-in.)-diameter pipeline that connected with one or more tanks, each with a 15,000-L (4,000-gal) capacity. This pipeline was part of the 100-D-56:2 waste site, which is the south portion of 100-D-56 pipeline waste site (Figure 5). The sodium dichromate storage tanks were located in the equipment room on the ground floor in the northeast corner of the 183-DR Head House. From the storage tanks, the sodium dichromate solution was pumped via two 1.9-cm (0.75-in.)-diameter overhead lines across the flocculation and sedimentation basins to the sample room and mixing pumps on the far east end of the 183-DR Filter Building.

River water from the 182-D Building entered the head house through two 91-cm (36-in.)-diameter steel pipes. The 183-DR Head House contained inlet control valves, a flash mixer chamber, chlorinators, as well as ferric sulfate, lime, and silicate storage, and the chemical feeding equipment used for water treatment. River water entered a mixing flume on the west side of the 183-DR Flocculation Basins for initial treatment. Sulfuric acid, potentially containing lead and mercury contaminants, was added to incoming river water in the flume to adjust the pH. Water then moved to the flocculation and sedimentation basins. The sedimentation basins were designed to allow heavier particulate matter to settle out of the water before entering the filter building. In total, there were six flocculation and six sedimentation basins. The structure containing the flocculation and sedimentation basins and flume measured 114 by 75 m (374 by 75 ft).

Figure 4. Location of the Former 183-DR Acid Facility, 152C1-DR Substation, and 100-D-83:1 Pipelines.



G:\RS\_SamplingFigures\1000\100-0-77\_Fig5.deg 152C1-DR SUBSTATION SHED LIME STORAGE TANK 183-DR HEAD HOUSE 100-D-56:2 pipelines 183-DR COAGULATION BASINS FERROUS SULFATE STORAGE TANK Legend SCALE 1:250 Demolished Building 100-D-56 South Pipelines 10 meters 2.5 100-D-77 183-DR Head House

Figure 5. 183-DR Head House with Location of the 100-D-56:2 South Pipelines.

The 183-DR Filter Building was a 171- by 16-m (560- by 52-ft) building located to the east of the sedimentation basins (Figure 5). The facility received the acid treated water from the sedimentation basins. The water was filtered through 10 filter basins made of anthracite, sand, and gravel. After filtration, sodium dichromate was added to the water. Solutions of 10% sodium dichromate from the 183-DR Head House entered the sample room of the filter building via overhead pipelines. The sample room was located on the east side of the facility midway between the north and south end of the building (Figure 6). At this point, sodium dichromate solution was directly added to the treated water and then mixed in a mixing flume on the east side of the filter building.

# 100-D-83:1 183-DR Acid Addition Pipelines

The 100-D-83 Treated Water Pipelines waste site is a compilation of 89 pipelines that conveyed treated water with chemical additions or treatment chemicals associated with pre-reactor cooling water. Raw water from the Columbia River and sanitary service water prior to addition or inclusion of chemical additives for the cooling water are excluded from this site. The 100-D-83 pipelines transferred chemical products to the water treatment facilities and transferred treated cooling water to the reactor and laboratory facilities.

The 100-D-83 pipelines were separated into subsites based on geographical area and the recommended remedial action pathway. The 100-D-83:1, 183-DR Acid Addition Pipelines subsite encompassed 35 pipeline segments associated with the 183-DR Acid Facility (100-D-77) and included low-pressure steam, sulfuric acid, and lime slurry, all located north of the 183-DR Head House (Figure 4). The 100-D-83:1 pipelines transferred sulfuric acid from the acid facility to the 183-DR Head House. The majority of the pipeline segments were contained in the acid pipe trench (100-D-77).

Sulfuric acid was received by railroad car and stored in two outside above-ground acid storage tanks (Figure 4). The acid was fed by gravity to the 183-DR Head House by maintaining the supply in the acid head tank. The piping between the head tank and the 183-DR Head House was all above-grade. Sulfuric acid was added to the raw water before coagulation and filtration to reduce the pH below 7.5 and to aid in the suspension of solids. After filtration, lime was added to the water to raise the pH to between 7.5 and 7.8 (BHI 2005). Lime slurry was returned to the acid trench for neutralization of the waste acid. Process knowledge concerning the chemical makeup of sulfuric acid used in historical water treatment processes on the Hanford Site has determined that much of the sulfuric acid was purchased from a mining company and contained mercury and lead.

Figure 6. 183-DR Water Treatment Facility Showing Location of the Sample Room in the Filter Building.



#### **CONFIRMATORY SAMPLING**

The 100-D-62, 100-D-77, and 100-D-83:1 waste sites were each recommended for remediation without confirmatory sampling (WCH 2008a, 2008b, 2010).

#### REMEDIAL ACTION DECISIONS

The 100-D-62 waste site was identified as an additional remove, treat, and dispose site in the Explanation of Significant Differences for the 100 Area Remaining Sites Interim Remedial Action Record of Decision, Hanford Site, Benton County, Washington, (100 Area ESD) (EPA 2009). The site was recommended for remediation due to potentially significant confirmatory sampling costs relative to generally low remediation costs for septic systems and because the waste site was associated with the 183-DR Head House with suspected hexavalent chromium contamination (WCH 2008a).

The 100-D-77 waste site was identified as a candidate site for confirmatory sampling in the 100 Area ESD (EPA 2009). Portions of the 100-D-77 waste site, which encompasses the entire 183-DR Water Treatment Facility, were recommended for remediation without confirmatory sampling due to specific operational use (WCH 2008b). The former 183-DR Head House, including the remaining portion of the 100-D-56:2 pipelines at the west side of the head house, and the sample room on the east side of the 183-DR Filter Building were recommended for remediation due to potential as a source of hexavalent chromium groundwater contamination. The former 183-DR Acid Facility area of the 100-D-77 waste site was recommended for remediation due to potential mercury and lead contamination. The former 152C1-DR Substation area of the 100-D-77 waste site was recommended for remediation due to potential polychlorinated biphenyl (PCB) contamination. Other portions of the site, including the former 183-DR Flocculation Basins, 183-DR Sedimentation Basins, and the 183-DR Filter Building, with the exception of the sample room, were not recommended for remediation.

The 100-D-83:1 pipelines were identified as a candidate site for confirmatory sampling in the 100 Area ESD (EPA 2009). The 100-D-83:1 subsite was recommended for remediation due to historical and process information (WCH 2010).

#### REMEDIAL ACTION SUMMARY

Remedial action at the 100-D-62 waste site was conducted on May 2 and 3, 2011. A reinforced concrete septic tank, associated concrete piping, and soil were removed as part of the remediation and staged at the SPAs. Approximately 793 bank cubic meters (BCM) (1,037 bank cubic yards [BCY]) of soil and debris was loaded on July 12 and 13, 2011, for disposal at the Environmental Restoration Disposal Facility (ERDF).

Remedial action at the 100-D-77 waste site began on May 3, 2011, and continued through July 13, 2011. The 100-D-83:1 subsite, which consisted of the pipeline segments associated with the 183-DR Acid Facility, was removed during the 100-D-77 waste site remediation.

The pipeline segments included low-pressure steam, sulfuric acid, and lime slurry. Remediation continued to approximately 4.5 m (15 ft) below ground surface (bgs) resulting in approximately 7,103 BCM (9,290 BCY) of contaminated soil and debris that was removed and staged at the staging pile areas (SPAs) pending loadout and disposal.

A 20-m (65.6-ft) section of the 100-D-56:2 pipelines, located at the pipelines entrance into the 183-DR Head House, was removed during the 100-D-77 remediation. The 100-D-56:2 subsite consisted of the chemical supply lines (sodium dichromate and sodium silicate) that exited the west side of the 185-D Building and extended to the 183-DR Head House. The former 183-DR Filter Building sample room (Figure 6) was also remediated. Post-excavation civil surveys of the 100-D-62, 100-D-77, and 100-D-83:1 remediation and the 100-D-77 sample room remediation are provided in Figures 7 and 8. Loadout of waste material with subsequent disposal at ERDF was conducted between July 13 and October 18, 2011.

At the completion of the remediation, in-process soil samples were collected on July 6 and July 11, 2011, to determine if additional remediation of the waste site was necessary. The in-process sample data are provided in Appendix B. Mercury was measured above the direct exposure remedial action goals (RAGs) in the in-process sample data. Based on these results, a second tier of excavation was designed.

The tier 2 remediation began on December 8, 2011, and continued through January 16, 2012. Approximately 7,126 BCM (9,320 BCY) of contaminated soil and debris were removed from the excavation and moved to the SPAs for loadout and disposal at ERDF. The excavation depth extended as deep as 9.5 m (31 ft) bgs. An aerial photograph of the excavation area is presented in Figure 9. The final post-excavation civil survey overlaid on the 100-D-77, 100-D-62, and 100-D-83:1 waste sites is shown in Figure 10. Loadout of the tier 2 waste material began on December 14, 2011.

Verification samples of the excavated area were collected on September 18, 2012. Mercury above direct exposure RAGs was measured at one of the sample locations (EXC-4). Benzo(a)pyrene was measured above direct exposure RAGs at two locations (EXC-3 and FS-1) (Figure 11). The presence of elevated PAH within the excavation area was attributed to cross-contamination of asphalt (Figure 12). In agreement with the Washington State Department of Ecology (Ecology) (WCH 2012b), additional soil was removed at and around the sample location (EXC-4) with elevated mercury on March 15, 2013. An additional 76 BCM (100 BCY) of contaminated soil and debris were removed from the excavation and staged prior to disposal at ERDF. The area in which additional removal was performed included the FS-1 sample location. Replacement verification samples were collected at the EXC-4 and FS-1 locations on March 15, 2013. The agreement for additional remediation dispositioned the benzo(a)pyrene result at location EXC-3 as cross-contamination with asphalt (WCH 2012b).

\autocad01\cad\_projects\rs\_samplingfigures\100d\100-d-77\_fig10.dwg 100-D-56:2 PIPELINE REMEDIATION AVE SCALE 1:600 Legend 24 meters 12 Asphalt Road 100-D-62, 100-D-83:1 and 100-D-77 Tier 1 Post Excavation Civil Survey

Figure 7. Post-Excavation Civil Survey of the 100-D-62, 100-D-83:1, and 100-D-77 Tier 1 Remediation.

Figure 8. Post-Excavation Civil Survey of the 183-DR Sample Room Remediation.



Figure 9. May 2012 Aerial Photograph After Completion of Tier 2 Remediation. Remaining asphalt road 100-D-62, 100-D-77, 100-D-83:1 Excavation 100-D-100 Excavation 100-D-77 Sample Room Excavation

\autocad01\cad\_projects\rs\_samplingfigures\100d\100-d-77\_fig9.dwg -100-D-77 100-D-83:1 100-D-56:2 PIPELINE EXCAVATION 100-D-62 Legend SCALE 1:800 32 meters Rail Road Tracks Post-Excavation Civil Survey Dirt Roads Overlaid on the 100-D-77, Paved Roads 100-D-62 and 100-D-83:1 **Demolished Building** 

Figure 10. Post-Excavation Civil Survey of the Tier 2 Remediation.

Figure 11. Verification Sample Locations at Tier II Excavation with Direct Exposure Exceedances, Overlain with 100-D-62, 100-D-77, and 100-D-83:1 Site Locations.



BaP = benzo(a)pyrene

RAG = remedial action goal

DE = direct exposure



Figure 12. Asphalt at the EXC-3 Sample Location.

Contaminated soil, concrete, and rebar from previously demolished buildings, piping, and a brick-lined concrete acid trap were among the types of material removed from the excavation. Additionally, two fire extinguishers were found in the SPAs (North SPA 1 and North SPA 2) during waste loadout. Both were found to be discharged and were subsequently disposed. Six focused sample locations were identified for verification sampling based on anomalous material observed during remediation. The focused sample locations, descriptions of material observed, and sample numbers for the waste characterization or in-process samples collected during site remediation are included in Table 1 with data presented in Appendix B.

All materials removed from the 100-D-62, 100-D-77, and 100-D-83:1 excavation were staged at five SPAs prior to loadout and disposal at ERDF. The SPAs identified as North SPA 1, North SPA 2, and North SPA 3 included waste material from the 100-D-62, 100-D-77, and 100-D-83:1 remediation only. The two other SPAs (4 and 5) received waste material from 100-D-62, 100-D-77, and 100-D-83:1 remediation, as well as the 100-D-50:6, 183-DR Clearwell Drain Pipelines, and 100-D-104, Unplanned Release Near 185-D Sodium Dichromate Storage Tank and Acid Neutralization French Drain waste sites. SPAs 4 and 5 were still in use when the 100-D-62, 100-D-77, and 100-D-83:1 waste sites VWI was prepared. Therefore, only SPAs 1, 2, and 3 were included in the VWI (WCH 2013e). Verification sampling and evaluation for SPAs 4 and 5 were conducted with the 100-D-50:6 waste site (WCH 2012c, 2013d).

# **VERIFICATION SAMPLING ACTIVITIES**

This section describes the basis for selection of a verification sampling design for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites excavation area and SPAs. Two decision units (excavation area and SPA) were identified for the purpose of statistical verification sampling. Six focused sample locations were identified based on anomalous material observed during remediation, as described in Table 1. A seventh focused sample was located at the remediated location of the 183-DR Filter Building sample room. Three additional focused samples were located in the footprint of the former 100-D-83:1 pipelines.

Verification sampling was conducted on September 4 and 18, 2012; March 15, 2013; April 8 and 29, 2013; and May 29, 2013. Sampling and analysis were performed to support a determination that residual contaminant concentrations in the soil meet cleanup criteria specified in the RDR/RAWP (DOE-RL 2009b) and the Remaining Sites ROD (EPA 1999). Grab samples were collected as described in the *Work Instruction for Verification Sampling of the 100-D-77*, 183-DR Water Treatment Facility; 100-D-62, 183-DR Headhouse Septic Tank; and 100-D-83:1, 183-DR Acid Addition Pipelines Waste Sites (WCH 2013e). An additional verification focused sample for 100-D-77 was collected from the former 183-DR Filter Building sample room location remediation. This sample was included in the Work Instruction for Verification Sampling of the 100-D-50:6, 183-DR Clearwell Drain Pipelines Waste Site (WCH 2012c). This sample location was identified as "FS-5 (100-D-77)" in the 100-D-50:6 verification work instruction (WCH 2012c). All sampling was performed in accordance with ENV-1, Environmental Monitoring & Management, to fulfill the requirements of the 100 Area Remedial Action Sampling and Analysis Plan (DOE-RL 2009a).

Table 1. Waste Characterization/In-Process Sample Locations Identified for Focused Sampling of Anomalous Material in the Verification Work Instruction (WCH 2013e).

| HEIS Sample Sample Type Number |                                | Washington State<br>Plane (m) |          | Location Description                                                                                           | Focused<br>Sample |
|--------------------------------|--------------------------------|-------------------------------|----------|----------------------------------------------------------------------------------------------------------------|-------------------|
|                                |                                | Northing                      | Easting  |                                                                                                                | Location          |
| J1H216                         | Waste characterization, soil   | 151185                        | 573239   | 100-D-77, red/rust to light brown colored soil from chemical transfer area                                     | FS-1              |
| 1111017                        | Waste characterization, soil   | 151154                        | 573256   | 100-D-62, soil from drain field                                                                                | FS-2              |
| J1H217<br>J1H230               | Waste characterization, sludge | 151158                        | 573256   | 100-D-62, tank contents, dark black/brown sludge-like material with strong sewer odor                          | FS-3              |
| J1J4W7                         | In-process, other solid        | 151240                        | 573256   | 100-D-77, salmon-colored material from acid trap with a putty-like consistency and very finely grained         | FS-4              |
| J1K4H9                         | In-process, soil               | 151222                        | 573247   | 100-D-77, coarse sand matrix with a bleached/white appearance, small crystalline pieces visible in soil matrix | FS-5              |
| J1K4D6                         | In-process, soil               | 151191.2                      | 573260.1 | 100-D-62/100-D-77, Location #6 at base of excavation                                                           | FS-6              |

HEIS = Hanford Environmental Information System

#### **Contaminants of Potential Concern for Verification Sampling**

The COPCs for the 100-D-62 and 100-D-77 waste sites were determined based on available historical information for the 183-DR Water Treatment Facility and contaminants associated with septic systems. The COPCs for the 100-D-62 septic system consisted of chemicals used in the 183-DR Head House and included hexavalent chromium, total chromium, lead, mercury, and anions. Semivolatile organic compounds (SVOCs), PAH, pesticides, and PCBs were also considered COPCs for 100-D-62 based on findings from other septic systems in the 100-D Area. The COPCs for the 100-D-77 water treatment facility included hexavalent chromium, total chromium, lead, mercury, and sulfate. Nitrate was included because of nitrate contamination in the 100-D Area groundwater. Petroleum hydrocarbons were included as COPCs because of the proximity of the former 152C1-DR substation.

A combined list of COPCs for verification sampling of the excavation area and SPAs included hexavalent chromium, total chromium, lead mercury, anions, SVOCs, PAH, pesticides, PCBs, and petroleum hydrocarbons. While not considered COPCs, antimony, arsenic, barium, beryllium, boron, cadmium, cobalt, copper, manganese, molybdenum, nickel, selenium, silver, vanadium, and zinc were evaluated with the expanded inductively coupled plasma (ICP) metals list.

The 100-D-83:1 pipelines transported low-pressure steam, sulfuric acid, and lime slurry. The COPCs identified for the pipelines were identical to those for the 100-D-77 waste site and included hexavalent chromium (due to hexavalent chromium contamination at 100-D Area), total chromium, lead, mercury, and sulfate. Nitrate was also included because of the nitrate contamination in the groundwater in the 100-D Area. These COPCs were included for 100-D-83:1 focused samples.

The analytical methods that were performed to evaluate the 100-D-62, 100-D-77, and 100-D-83:1 site COPCs are provided in Table 2.

| Analytical Method                     | Contaminants of Potential Concern |
|---------------------------------------|-----------------------------------|
| ICP metals – EPA Method 6010 a        | Chromium (total), lead            |
| Mercury – EPA Method 7471             | Mercury                           |
| Hexavalent chromium – EPA Method 7196 | Hexavalent chromium               |
| IC Anions – EPA Method 300.0          | Sulfate                           |
| Nitrate/nitrite – EPA Method 353.2    | Nitrate                           |
| SVOA – EPA Method 8270                | Semivolatile organic compounds    |
| PAH – EPA Method 8310 <sup>b</sup>    | Polycyclic aromatic hydrocarbons  |
| Pesticides – EPA Method 8081          | Pesticides                        |
| PCB – EPA Method 8082                 | Polychlorinated biphenyls         |

Table 2. Laboratory Analytical Methods. (2 Pages)

Table 2. Laboratory Analytical Methods. (2 Pages)

| Analytical Method         | Contaminants of Potential Concern |
|---------------------------|-----------------------------------|
| TPH – EPA Method NWTPH-Dx | Total petroleum hydrocarbons      |

<sup>&</sup>lt;sup>a</sup> The expanded list of ICP metals included antimony, arsenic, barium, beryllium, boron, cadmium, chromium (total), cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, vanadium, and zinc in the analytical results package.

Because method 8310 specifically analyzes for PAH, data from this method was used preferentially over method 8270 data for site evaluation of the PAH analytes.

EPA = U.S. Environmental Protection Agency
IC = ion chromatography
ICP = inductively coupled plasma
NWTPH= Northwest total petroleum hydrocarbons

PAH = polycyclic aromatic hydrocarbons
PCB = polychlorinated biphenyl
SVOA = semivolatile organic analysis
TPH = total petroleum hydrocarbons

#### **Verification Sampling Design**

The statistical sampling designs for the 100-D-62, 100-D-77, and 100-D-83:1 remediation were developed using Visual Sample Plan<sup>1</sup> (VSP). The areas identified for the purpose of statistical verification sampling were delineated in VSP and used as the basis for a random-start systematic grid for verification soil sample collection at the site. Twelve statistical soil samples were collected on the grid within each of the two decision units. A triangular grid is used based on studies that indicate triangular grids are superior to square grids (Gilbert 1987). Six focused sample locations were identified within the excavation area based on anomalous material observed during remediation. The focused sample locations, descriptions of material observed, and sample numbers for the waste characterization or in-process samples collected during site remediation are presented in Table 1. The verification sample locations are presented in Figures 13 and 14.

A remediated portion of the 100-D-77 waste site, the location of the former 183-DR Filter Building sample room, was inadvertently omitted from the VWI (WCH 2013e). A verification focused sample for this location was included in the verification sample design for the 100-D-50:6, 183-DR Clearwell Drain Pipelines waste site (WCH 2012c). This sample location was identified as "FS-5 (100-D-77)" in the 100-D-50:6 VWI (WCH 2012c). Sample location "FS-5 (100-D-77)" is not related to sample location "FS-5" collected under the 100-D-77 VWI (WCH 2013e).

Because of a change in the original boundary for North SPA 3, five verification samples, all within the North SPA 3 boundary, required relocation and the sample design was revised (Rev. 1) (WCH 2013e). After the date of the initial SPA approval and prior to placement of waste material in the North SPA 3 area, a haul road was constructed across the eastern portion of the SPA, reducing its usable area (Figure 15).

<sup>&</sup>lt;sup>1</sup> Visual Sample Plan is a site map-based user-interface program that may be downloaded at http://vsp.pnnl.gov.

Figure 13. Verification Sample Locations for the 100-D-62, 100-D-77, and 100-D-83:1 Waste Sites Excavation Decision Unit.



Figure 14. Verification Sample Locations for the 100-D-62, 100-D-77, and 100-D-83:1 Staging Pile Area Decision Unit.



Figure 15. 100-D-62, 100-D-77, and 100-D-83:1 Excavation and Staging Pile Area Locations Overlain on a September 2012 Aerial Photograph.



The boundary for the North SPA 3 area used to create the Rev. 0 sample design inadvertently included the entire approved SPA boundary rather than the actual area utilized for staging waste. This resulted in three sample locations falling outside of the actual waste staging area. The North SPA 3 was surveyed, and the resulting shape (as shown in Figures 14 and 15) was entered into VSP to determine new sample locations for SPA-8, SPA-9, SPA-10, SPA-11, and SPA-12. The locations for these five samples within the updated boundary were generated by VSP using systematic grid sampling and a triangular grid, which was the same method used for the statistical sample placement in the Rev. 0 sample design. The Rev. 0 sample locations for SPA-8, SPA-9, SPA-10, SPA-11, and SPA-12, were replaced in Rev. 1 with the new locations.

Three additional focused samples were added in Rev. 2 of the sample design (WCH 2013c) to specifically address the remediation of 100-D-83:1 pipelines. The waste site was fully removed within the 100-D-77 excavation (Figure 10). The additional verification samples were located in the footprint of the 100-D-83:1 waste site as described below:

- 1. FS-D-83:1-1 was located at the former location of the acid storage tanks.
- 2. FS-D-83:1-2 was located at the intersection of the pipelines from the former acid head tank and the pipelines between the acid storage tank and the 183-DR Head House.
- 3. FS-D-83:1-3 was located downstream of the acid tanks at the location of a 90 degree bend in the pipelines, prior to entry into the 183-DR Head House.

A summary of the verification samples collected and laboratory analyses performed is provided in Table 3.

| Table 3. 100-D-62, 100-D-77, and 100-D-83:1 | Verification Sample S | Summary. ( | 2 Pages) |
|---------------------------------------------|-----------------------|------------|----------|
|---------------------------------------------|-----------------------|------------|----------|

| Sample Location     | HEIS<br>Sample |          | State Plane<br>lates (m) | Sample Analysis                               |
|---------------------|----------------|----------|--------------------------|-----------------------------------------------|
|                     | Number         | Northing | Easting                  |                                               |
| EXC-1               | J1PW81         | 151165.5 | 573247.8                 |                                               |
| EXC-2               | J1PW82         | 151161.9 | 573265.7                 |                                               |
| EXC-3               | J1PW83         | 151186.5 | 573223.9                 |                                               |
| EXC-4 <sup>a</sup>  | J1PW84         | 151182.9 | 573241.9                 |                                               |
| EXC-4 (resample)    | J1RJ77         | 151182.9 | 573241.9                 |                                               |
| EXC-5               | J1PW85         | 151179.3 | 573259.9                 |                                               |
| EXC-6               | J1PW86         | 151196.7 | 573254.0                 | ICP metals <sup>b</sup> , mercury, hexavalent |
| EXC-7               | J1PW87         | 151193.1 | 573272.0                 | chromium, IC anions, nitrate/nitrite,         |
| EXC-8               | J1PW88         | 151214.1 | 573248.2                 | SVOA, pesticides, PAH, PCBs, TPH              |
| EXC-9               | J1PW89         | 151210.4 | 573266.2                 | ]                                             |
| EXC-10              | J1PW90         | 151231.4 | 573242.3                 |                                               |
| EXC-11              | J1PW91         | 151227.8 | 573260.3                 | 1                                             |
| EXC-12              | J1PW92         | 151245.2 | 573254.5                 |                                               |
| Duplicate of J1PW83 | J1PW93         | 151186.5 | 573223.9                 |                                               |
| Split of J1PW83     | J1PWF8         | 151186.5 | 573223.9                 |                                               |

Table 3. 100-D-62, 100-D-77, and 100-D-83:1 Verification Sample Summary. (2 Pages)

| Sample Location              | HEIS             | Washingto | n State Plane |                                                                                        |
|------------------------------|------------------|-----------|---------------|----------------------------------------------------------------------------------------|
| Sample Location              | Sample<br>Number |           | nates (m)     | Sample Analysis                                                                        |
| SPA-1                        | +                | Northing  | Easting       |                                                                                        |
| <del></del>                  | J1R641           | 151190.4  | 573297.6      |                                                                                        |
| SPA-2                        | J1R642           | 151219.1  | 573293.4      |                                                                                        |
| SPA-3                        | J1R643           | 151208.4  | 573320.3      |                                                                                        |
| SPA-4                        | J1R644           | 151237.1  | 573316.2      | 7                                                                                      |
| SPA-5                        | J1R645           | 151125.8  | 573662.1      | 7                                                                                      |
| SPA-6                        | J1R646           | 151115.0  | 573689.0      | -                                                                                      |
| SPA-7                        | J1R647           | 151143.7  | 573684.9      | ICP metals <sup>b</sup> , mercury, hexavalent                                          |
| SPA-8°                       | J1RKM8           | 151110.9  | 573728.9      | chromium, IC anions, nitrate/nitrite                                                   |
| SPA-9°                       | J1RKM9           | 151110.9  | 573753.1      | SVOA, pesticides, PAH, PCBs, TPH                                                       |
| SPA-10 °                     | J1RKM6           | 151132.0  | 573716.7      |                                                                                        |
| PA-11 °<br>PA-12 °           | J1RKM7           | 151132.0  | 573741.0      |                                                                                        |
| SPA-12 °                     | J1RKM5           | 151153.0  | 573728.9      |                                                                                        |
| Duplicate of J1R645          | J1R653           | 151125.8  | 573662.1      |                                                                                        |
| Split of J1R645              | J1R670           | 151125.8  | 573662.1      |                                                                                        |
| FS-1 d, e                    | J1PWC8           | 151185.0  | 573239.0      |                                                                                        |
| FS-1 e (resample)            | J1RJ78           | 151185.0  | 573239.0      | -                                                                                      |
| FS-2 e                       | J1PWC9           | 151154.0  | 573256.0      | ICP metals <sup>b</sup> , mercury, hexavalent                                          |
| FS-3 <sup>e</sup>            | J1PWD0           | 151158.0  | 573256.0      | chromium, IC anions, nitrate/nitrite                                                   |
| FS-4 <sup>e</sup>            | J1PWD1           | 151240.0  | 573256.0      | SVOA, pesticides, PAH, PCBs, TPH                                                       |
| FS-5 <sup>e</sup>            | J1PWD2           | 151222.0  | 573247.0      | 7                                                                                      |
| FS-6 <sup>e</sup>            | J1PWD3           | 151191.0  | 573260.0      | 1                                                                                      |
| FS D-83:1-1 f                | J1RN38           | 151237.9  | 573252.8      |                                                                                        |
| FS D-83:1-2 f                | J1RN39           | 151222.7  | 573253.2      | ICP metals <sup>b</sup> , mercury, hexavalent                                          |
| FS D-83:1-3 <sup>f</sup>     | J1RN40           | 151200.7  | 573252.8      | chromium, IC anions, nitrate/nitrite                                                   |
| FS-5 (100-D-77) <sup>g</sup> | J1R160           | 151188.0  | 573356.5      | ICP metals <sup>b</sup> , mercury, hexavalent chromium, IC anions, nitrate/nitrite TPI |
| Equipment blank              | J1R654           | NA        | NA            | ICP metals b, mercury, SVOA                                                            |

Mercury above direct exposure RAGs was measured in J1PW84 at sample location EXC-4. This location and surrounding area, including the FS-1 location, underwent additional remediation and was resampled for all analyses.

The expanded list of ICP metals included antimony, arsenic, barium, beryllium, boron, cadmium, chromium (total), cobalt, copper, lead, manganese, molybdenum, nickel, selenium, silver, vanadium, and zinc.

New sample locations for the five North SPA 3 samples SPA-8, SPA-9, SPA-10, SPA-11, and SPA-12 were included in Rev. 1 of the verification work instruction (WCH 2013e).

Benzo(a)pyrene above direct exposure RAGs was measured in J1PWC8 at sample location FS-1 due to asphalt cross-contamination. Sample location FS-1 was within the area that underwent additional remediation due to mercury contamination at location EXC-4. After the additional removal action, location FS-1 and EXC-4 were both resampled for all analyses.

Six focused samples associated with the 100-D-62 and 100-D-77 waste sites were identified for verification sampling based on in-process sample results as detailed in Table 1.

Focused samples FS-D-83:1-1, FS-D-83:1-2, and FS-D-83:1-3 were located in the footprint of the 100-D-83:1 waste site and added in Rev. 2 of the verification work instruction (WCH 2012e).

sample location FS-5 (100-D-77) was identified in the 100-D-50:6 verification work instruction (WCH 2012c) as a 100-D-77 verification sample located at the former 183-DR Filter Building sample room.

HEIS = Hanford Environmental Information System

PCB = polychlorinated biphenyl

IC = ion chromatography

SPA = staging pile area

ICP = inductively coupled plasma

NA = not applicable SVOA = semivolatile organic analysis TPH = total petroleum hydrocarbons

PAH = polycyclic aromatic hydrocarbons

#### **Verification Sampling Results**

All verification samples were analyzed using analytical methods approved by EPA (DOE-RL 2009b). Evaluation of the verification data from the 100-D-62, 100-D-77, and 100-D-83:1 waste sites was performed by direct comparison of the statistical or maximum sample results for each COPC against cleanup criteria.

The primary statistical calculation to evaluate compliance with cleanup standards is the 95% upper confidence limit (UCL) on the arithmetic mean of the data. The 95% UCL values for each detected COPC are computed for each of the decision units as specified by the RDR/RAWP (DOE-RL 2009b). The calculations are provided in Appendix C. When a nonradionuclide COPC was detected in fewer than 50% of the verification samples collected for a decision unit, the maximum detected value was used for comparison to RAGs. If no detections for a given COPC were reported in the data set, then no statistical calculation or evaluation was performed for that COPC.

Comparisons of the results for site COPCs with the RAGs for each of the decision units are listed in Tables 4, 5, and 6. Contaminants that were not detected by laboratory analysis are excluded from these tables. Calculated cleanup levels are not presented in the Cleanup Levels and Risk Calculations Database (Ecology 2012) under WAC 173-340-740(3) for calcium, magnesium, potassium, silicon, and sodium. The EPA's *Risk Assessment Guidance for Superfund* (EPA 1989) recommends that aluminum and iron not be considered in site risk evaluations. Therefore, aluminum, calcium, iron, magnesium, potassium, silicon, and sodium are not considered site COPCs and are also not included in these tables. The complete laboratory results are stored in the Environmental Restoration (ENRE) project-specific database prior to submitting to the Hanford Environmental Information System (HEIS) for archiving and are provided in Appendix C.

As previously discussed, elevated concentrations of multiple PAH, including benzo(a)pyrene above the direct exposure RAG, were reported in verification samples from locations EXC-3 and FS-1 (Figure 11). Also, mercury was detected above the direct exposure RAG in statistical sample EXC-4 (J1PW84) and required additional remediation (Figure 11). In agreement with Ecology, additional removal occurred at the EXC-4 location and surrounding area (WCH 2012b). Because the area of additional soil removal included the FS-1 location, verification samples for all analyses were collected from both the EXC-4 and FS-1 locations. The benzo(a)pyrene above the direct exposure RAG from the EXC-3 location is the result of asphalt cross-contamination (WCH 2012b). Therefore, the benzo(a)pyrene results for sample J1PW83 and duplicate J1PW93 are presented for information only and not evaluated for cleanup verification.

Table 4. Comparison of Contaminant Concentrations to Action Levels for the 100-D-62, 100-D-77, and 100-D-83:1 Excavation Area Decision Unit Verification Statistical Samples. (2 Pages)

|                                 | Statistical or                                                                                                                | Reme               | Soll Cleanin   Soil Cleanin                            |                                                  |                                       |                                                   |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------------------|---------------------------------------------------|--|--|--|--|
| СОРС                            | Maximum Result b (mg/kg)                                                                                                      | Direct<br>Exposure | Soil Cleanup<br>Level for<br>Groundwater<br>Protection | Soil Cleanup<br>Level for<br>River<br>Protection | Does the<br>Result<br>Exceed<br>RAGs? | Does the<br>Result<br>Pass<br>RESRAD<br>Modeling? |  |  |  |  |
| Antimony <sup>c</sup>           | 0.40 ( <bg)< td=""><td>32</td><td>5 <sup>d</sup></td><td>5 <sup>d</sup></td><td>No</td><td></td></bg)<>                       | 32                 | 5 <sup>d</sup>                                         | 5 <sup>d</sup>                                   | No                                    |                                                   |  |  |  |  |
| Arsenic                         | 2.9 ( <bg)< td=""><td>20 d</td><td>20 <sup>d</sup></td><td>20 d</td><td>No</td><td></td></bg)<>                               | 20 d               | 20 <sup>d</sup>                                        | 20 d                                             | No                                    |                                                   |  |  |  |  |
| Barium                          | 66.0 ( <bg)< td=""><td>5,600</td><td>200</td><td>400</td><td>No</td><td></td></bg)<>                                          | 5,600              | 200                                                    | 400                                              | No                                    |                                                   |  |  |  |  |
| Beryllium                       | 0.37 ( <bg)< td=""><td>10.4 e</td><td>1.51 <sup>d</sup></td><td>1.51 <sup>d</sup></td><td>No</td><td></td></bg)<>             | 10.4 e             | 1.51 <sup>d</sup>                                      | 1.51 <sup>d</sup>                                | No                                    |                                                   |  |  |  |  |
| Boron <sup>f</sup>              | 1.3                                                                                                                           | 7,200              | 320                                                    | g                                                | No                                    |                                                   |  |  |  |  |
| Cadmium <sup>c</sup>            | 0.062 ( <bg)< td=""><td>13.9 e</td><td>0.81 <sup>d</sup></td><td>0.81 <sup>d</sup></td><td>No</td><td><del></del></td></bg)<> | 13.9 e             | 0.81 <sup>d</sup>                                      | 0.81 <sup>d</sup>                                | No                                    | <del></del>                                       |  |  |  |  |
| Chromium                        | 9.1 ( <bg)< td=""><td>80,000</td><td>18.5 <sup>d</sup></td><td>18.5 <sup>d</sup></td><td>No</td><td><del></del></td></bg)<>   | 80,000             | 18.5 <sup>d</sup>                                      | 18.5 <sup>d</sup>                                | No                                    | <del></del>                                       |  |  |  |  |
| Cobalt                          | 10.0 ( <bg)< td=""><td>24</td><td>15.7 <sup>d</sup></td><td> g</td><td>No</td><td></td></bg)<>                                | 24                 | 15.7 <sup>d</sup>                                      | g                                                | No                                    |                                                   |  |  |  |  |
| Copper                          | 16.2 ( <bg)< td=""><td>2,960</td><td>59.2</td><td>22.0 <sup>d</sup></td><td>No</td><td></td></bg)<>                           | 2,960              | 59.2                                                   | 22.0 <sup>d</sup>                                | No                                    |                                                   |  |  |  |  |
| Lead                            | 7.8 ( <bg)< td=""><td>353</td><td>10.2 <sup>d</sup></td><td>10.2 <sup>d</sup></td><td>No</td><td><del>-</del></td></bg)<>     | 353                | 10.2 <sup>d</sup>                                      | 10.2 <sup>d</sup>                                | No                                    | <del>-</del>                                      |  |  |  |  |
| Manganese                       | 331 ( <bg)< td=""><td>3,760</td><td>512 <sup>d</sup></td><td>512 <sup>d</sup></td><td>No</td><td></td></bg)<>                 | 3,760              | 512 <sup>d</sup>                                       | 512 <sup>d</sup>                                 | No                                    |                                                   |  |  |  |  |
| Mercury                         | 0.12 ( <bg)< td=""><td>24</td><td>0.33 <sup>d</sup></td><td>0.33 <sup>d</sup></td><td>No</td><td></td></bg)<>                 | 24                 | 0.33 <sup>d</sup>                                      | 0.33 <sup>d</sup>                                | No                                    |                                                   |  |  |  |  |
| Molybdenum <sup>f</sup>         | 0.43                                                                                                                          | 400                | 8                                                      | g                                                | No                                    |                                                   |  |  |  |  |
| Nickel                          | 13.2 ( <bg)< td=""><td>1,600</td><td>19.1 <sup>d</sup></td><td>27.4</td><td>No</td><td></td></bg)<>                           | 1,600              | 19.1 <sup>d</sup>                                      | 27.4                                             | No                                    |                                                   |  |  |  |  |
| Vanadium                        | 75.5 ( <bg)< td=""><td>560</td><td>85.1 <sup>d</sup></td><td>g</td><td>No</td><td></td></bg)<>                                | 560                | 85.1 <sup>d</sup>                                      | g                                                | No                                    |                                                   |  |  |  |  |
| Zinc                            | 50.3 ( <bg)< td=""><td>24,000</td><td>480</td><td>67.8 <sup>d</sup></td><td>No No</td><td></td></bg)<>                        | 24,000             | 480                                                    | 67.8 <sup>d</sup>                                | No No                                 |                                                   |  |  |  |  |
| Chloride                        | 4.8 ( <bg)< td=""><td></td><td>25,000</td><td>g</td><td>No No</td><td></td></bg)<>                                            |                    | 25,000                                                 | g                                                | No No                                 |                                                   |  |  |  |  |
| Fluoride                        | 0.92 ( <bg)< td=""><td>4,800</td><td>96</td><td>400</td><td>No</td><td><del></del></td></bg)<>                                | 4,800              | 96                                                     | 400                                              | No                                    | <del></del>                                       |  |  |  |  |
| Nitrogen in nitrate             | 1.2 ( <bg)< td=""><td>128,000</td><td>1,000</td><td>2,000</td><td>No</td><td></td></bg)<>                                     | 128,000            | 1,000                                                  | 2,000                                            | No                                    |                                                   |  |  |  |  |
| Nitrogen in nitrite and nitrate | 2.9 ( <bg)< td=""><td>128,000</td><td>1,000</td><td>2,000</td><td>No</td><td></td></bg)<>                                     | 128,000            | 1,000                                                  | 2,000                                            | No                                    |                                                   |  |  |  |  |
| Sulfate                         | 29.0 ( <bg)< td=""><td>NA</td><td>25,000</td><td> g</td><td>No</td><td></td></bg)<>                                           | NA                 | 25,000                                                 | g                                                | No                                    |                                                   |  |  |  |  |
| TPH (diesel range)              | 7.9                                                                                                                           | 200                | 200                                                    | 200                                              | No                                    |                                                   |  |  |  |  |
| TPH (diesel range extended)     | 18.1                                                                                                                          | 200                | 200                                                    | 200                                              | No                                    |                                                   |  |  |  |  |
| 2-Methylnaphthalene             | 0.12                                                                                                                          | 320                | 3.2                                                    | g                                                | No                                    |                                                   |  |  |  |  |
| Acenaphthene                    | 0.19                                                                                                                          | 4,800              | 96                                                     | 129                                              | No                                    |                                                   |  |  |  |  |
| Acenaphthylene j                | 0.013                                                                                                                         | 4,800              | 96                                                     | 129                                              | No                                    |                                                   |  |  |  |  |
| Anthracene                      | 0.39                                                                                                                          | 24,000             | 240                                                    | 1,920                                            | No                                    |                                                   |  |  |  |  |
| Benzo(a)anthracene              | 0.66                                                                                                                          | 1.37               | 0.015 h                                                | 0.015 h                                          | Yes                                   | Yesi                                              |  |  |  |  |
| Benzo(a)pyrene                  | 0.023                                                                                                                         | 0.137              | 0.015 h                                                | 0.015 h                                          | Yes                                   |                                                   |  |  |  |  |
| Benzo(b)fluoranthene            | 0.50                                                                                                                          | 1.37               | 0.015 h                                                | 0.015 h                                          | Yes                                   | Yes i                                             |  |  |  |  |
| Benzo(ghi)perylene j            | 0.32                                                                                                                          | 2,400              | 48                                                     | 192                                              | +                                     | Yes i                                             |  |  |  |  |
| Benzo(k)fluoranthene            | 0.18                                                                                                                          | 1.37               | 0.015 h                                                | 0.015 h                                          | No                                    |                                                   |  |  |  |  |
| Carbazole                       | 0.57                                                                                                                          | 50                 | 0.438                                                  | g                                                | Yes k                                 | Yes i                                             |  |  |  |  |
| Chrysene                        | 0.56                                                                                                                          | 13.7               | 0.12                                                   | 0.1 h                                            |                                       | k                                                 |  |  |  |  |
| Dibenz(a,h)anthracene           | 0.092                                                                                                                         | 1.37               | 0.12<br>0.03 <sup>h</sup>                              | 0.1<br>0.03 <sup>h</sup>                         | Yes                                   | Yes                                               |  |  |  |  |
| Dibenzofuran                    | 0.34                                                                                                                          | 160                | 3.20                                                   | g                                                | Yes<br>No                             | Yes 1                                             |  |  |  |  |

#### Table 4. Comparison of Contaminant Concentrations to Action Levels for the 100-D-62, 100-D-77, and 100-D-83:1 Excavation Area Decision Unit Verification Statistical Samples. (2 Pages)

|                           |                                                             | Remed                                            | lial Action Goals                                      | (mg/kg) <sup>a</sup>                             | Does the                  | Does the                     |
|---------------------------|-------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------|------------------------------|
| COPC                      | Statistical or<br>Maximum<br>Result <sup>b</sup><br>(mg/kg) | Direct<br>Exposure                               | Soil Cleanup<br>Level for<br>Groundwater<br>Protection | Soil Cleanup<br>Level for<br>River<br>Protection | Result<br>Exceed<br>RAGs? | Result Pass RESRAD Modeling? |
| Fluoranthene              | 1.2                                                         | 3,200                                            | 64                                                     | 18.0                                             | No                        |                              |
|                           | 0.25                                                        | 3,200                                            | 64                                                     | 260                                              | No                        |                              |
| Fluorene                  | 0.23                                                        |                                                  |                                                        | 0.33 h                                           | Yes                       | Yesi                         |
| Indeno(1,2,3-cd)pyrene    | 0.30                                                        | 1.37                                             | 0.33 h                                                 | 0.33                                             | 103                       | 103                          |
| Phenanthrene <sup>j</sup> | 1.2                                                         | 24,000                                           | 240                                                    | 1,920                                            | No                        |                              |
|                           | 1.3                                                         | 2,400                                            | 48                                                     | 192                                              | No                        |                              |
| Pyrene                    | 1.3                                                         | <del>                                     </del> |                                                        | 0.017h                                           | No                        |                              |
| Aroclor-1260              | 0.0075                                                      | 0.5                                              | 0.017 h                                                | 0.017 h                                          | INo                       |                              |

RAGs obtained from the 100 Area RDR/RAWP (DOE-RL 2009b).

Maximum or 95% UCL, depending on data censorship, as described in the 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations (Appendix C).

Hanford Site-specific background value is not available; it was not evaluated during background study. Value used is from Natural Background Soil Metals Concentrations in Washington State (Ecology 1994).

d Where cleanup levels are less than background, cleanup levels default to background per WAC 173-340-700(4)(d) (Ecology 1996). The arsenic cleanup level of 20 mg/kg has been agreed to by the Tri-Party Agreement project managers as discussed in Section 2.1.2.1 of the 100 Area RDR/RAWP (DOE-RL 2009b).

<sup>e</sup> Carcinogenic cleanup level calculated based on the inhalation exposure pathway (WAC 173-340-750[3], Ecology 1996) using an airborne particulate mass-loading rate of 0.0001 g/m³ (Hanford Guidance for Radiological Cleanup [WDOH 1997]).

No Hanford Site-specific or Washington State background value available.

<sup>8</sup> No parameters (bioconcentration factors or ambient water quality criteria values) are available from the Washington State Department of Ecology Cleanup Levels and Risk Calculations database or other databases to calculate cleanup levels (WAC 173-340-730[3][a][iii], 1996 [Method B for surface waters]).

h Where cleanup levels are less than RDLs, cleanup levels default to RDLs per WAC 173-340-707(2) (Ecology 1996).

Based on RESRAD modeling discussed in Appendix C of the 100 Area RDR/RAWP (DOE-RL 2009b), the residual concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene are not predicted to migrate vertically within 1,000 years (based on the lowest distribution coefficient of the contaminants exceeding RAGs, chrysene, with a distribution coefficient value of 200 mL/g). The distance to groundwater from the bottom of the excavation area is 16.0 m (52.5 ft). Therefore, residual concentrations of these constituents are predicted to be protective of groundwater and the Columbia River.

Toxicity data for this chemical are not available. Cleanup levels are based on the following surrogate chemicals:

Contaminant: acenaphthylene, surrogate: acenaphthene

Contaminant: benzo(g,h,i)perylene, surrogate: pyrene Contaminant: phenanthrene, surrogate: anthracene.

Carbazole was detected at the EXC-3 location only and is attributed to cross-contamination of asphalt. Therefore, carbazole is not indicative of residual contamination from the waste sites and is not evaluated against the RAGs.

RDR/RAWP = Remedial Design Report/Remedial Action Work = not applicable = RESidual RADioactivity (dose model) RESRAD = background = total petroleum hydrocarbons TPH COPC = contaminant of potential concern = upper confidence limit UCL RAG = remedial action goal = Washington Administrative Code WAC RDL = required detection limit

Table 5. Comparison of Contaminant Concentrations to Action Levels for the 100-D-62, 100-D-77, and 100-D-83:1 Excavation Area Decision Unit Verification Focused Samples. (2 Pages)

|                                 |                                                                                                            | Reme               | dial Action Goals                                      | s (mg/kg) <sup>a</sup>                  |                                       | Does the                     |
|---------------------------------|------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------|-----------------------------------------|---------------------------------------|------------------------------|
| СОРС                            | Maximum<br>Result<br>(mg/kg)                                                                               | Direct<br>Exposure | Soil Cleanup<br>Level for<br>Groundwater<br>Protection | Soil Cleanup Level for River Protection | Does the<br>Result<br>Exceed<br>RAGs? | Result Pass RESRAD Modeling? |
| Antimony b                      | 1.1 ( <bg)< td=""><td>32</td><td>5 °</td><td>5 °</td><td>No</td><td></td></bg)<>                           | 32                 | 5 °                                                    | 5 °                                     | No                                    |                              |
| Arsenic                         | 2.5 ( <bg)< td=""><td>20°</td><td>20°</td><td>20°</td><td>No</td><td></td></bg)<>                          | 20°                | 20°                                                    | 20°                                     | No                                    |                              |
| Barium                          | 65.9 ( <bg)< td=""><td>5,600</td><td>200</td><td>400</td><td>No</td><td></td></bg)<>                       | 5,600              | 200                                                    | 400                                     | No                                    |                              |
| Beryllium                       | 0.51 ( <bg)< td=""><td>10.4 <sup>d</sup></td><td>1.51°</td><td>1.51°</td><td>No</td><td></td></bg)<>       | 10.4 <sup>d</sup>  | 1.51°                                                  | 1.51°                                   | No                                    |                              |
| Boron e                         | 1.7                                                                                                        | 7,200              | 320                                                    | f                                       | No                                    |                              |
| Cadmium <sup>b</sup>            | 0.18 ( <bg)< td=""><td>13.9 <sup>d</sup></td><td>0.81 °</td><td>0.81 °</td><td>No</td><td></td></bg)<>     | 13.9 <sup>d</sup>  | 0.81 °                                                 | 0.81 °                                  | No                                    |                              |
| Chromium                        | 7.4 ( <bg)< td=""><td>80,000</td><td>18.5°</td><td>18.5°</td><td>No</td><td></td></bg)<>                   | 80,000             | 18.5°                                                  | 18.5°                                   | No                                    |                              |
| Cobalt                          | 11.6 ( <bg)< td=""><td>24</td><td>15.7°</td><td> f</td><td>No</td><td></td></bg)<>                         | 24                 | 15.7°                                                  | f                                       | No                                    |                              |
| Copper                          | 19.4 ( <bg)< td=""><td>2,960</td><td>59.2</td><td>22.0°</td><td>No</td><td></td></bg)<>                    | 2,960              | 59.2                                                   | 22.0°                                   | No                                    |                              |
| Hexavalent chromium e           | 0.259                                                                                                      | 2.1 <sup>d</sup>   | 4.8                                                    | 2                                       | No                                    |                              |
| Lead                            | 7.8 ( <bg)< td=""><td>353</td><td>10.2°</td><td>10.2 °</td><td>No</td><td></td></bg)<>                     | 353                | 10.2°                                                  | 10.2 °                                  | No                                    |                              |
| Manganese                       | 337 ( <bg)< td=""><td>3,760</td><td>512°</td><td>512°</td><td>No</td><td></td></bg)<>                      | 3,760              | 512°                                                   | 512°                                    | No                                    |                              |
| Mercury                         | 0.15 ( <bg)< td=""><td>24</td><td>0.33 °</td><td>0.33 °</td><td>No</td><td></td></bg)<>                    | 24                 | 0.33 °                                                 | 0.33 °                                  | No                                    |                              |
| Molybdenum e                    | f                                                                                                          | No No              | <del>-</del>                                           |                                         |                                       |                              |
| Nickel                          | 10.8 ( <bg)< td=""><td>1,600</td><td>8<br/>19.1 °</td><td>27.4</td><td>No</td><td><del>-</del></td></bg)<> | 1,600              | 8<br>19.1 °                                            | 27.4                                    | No                                    | <del>-</del>                 |
| Vanadium                        | 113                                                                                                        | 560                | 85.1°                                                  | f                                       | Yes                                   | Yes <sup>g</sup>             |
| Zinc                            | 48.2 ( <bg)< td=""><td>24,000</td><td>480</td><td>67.8°</td><td>No</td><td></td></bg)<>                    | 24,000             | 480                                                    | 67.8°                                   | No                                    |                              |
| Chloride                        | 15.5 ( <bg)< td=""><td></td><td>25,000</td><td> f</td><td>No No</td><td></td></bg)<>                       |                    | 25,000                                                 | f                                       | No No                                 |                              |
| Fluoride                        | 1.4 ( <bg)< td=""><td>4,800</td><td>96</td><td>400</td><td>No No</td><td></td></bg)<>                      | 4,800              | 96                                                     | 400                                     | No No                                 |                              |
| Nitrogen in nitrate             | 2.4 ( <bg)< td=""><td>128,000</td><td>1,000</td><td>2,000</td><td>No</td><td></td></bg)<>                  | 128,000            | 1,000                                                  | 2,000                                   | No                                    |                              |
| Nitrogen in nitrite and nitrate | 1.9 ( <bg)< td=""><td>128,000</td><td>1,000</td><td>2,000</td><td>No</td><td></td></bg)<>                  | 128,000            | 1,000                                                  | 2,000                                   | No                                    |                              |
| Sulfate                         | 3,890                                                                                                      | NA NA              | 25,000                                                 | f                                       | No                                    |                              |
| TPH (diesel range)              | 16                                                                                                         | 200                | 200                                                    | 200                                     | No                                    | _ <del>-</del>               |
| TPH (diesel range extended)     | 24                                                                                                         | 200                | 200                                                    | 200                                     | No                                    |                              |
| Benzo(a)anthracene              | 0.011                                                                                                      | 1.37               | 0.015 h                                                | 0.015 h                                 | No                                    |                              |
| Benzo(a)pyrene                  | 0.016                                                                                                      | 0.137              | 0.015 h                                                | 0.015 h                                 | Yes                                   | Yes g                        |
| Benzo(b)fluoranthene            | 0.017                                                                                                      | 1.37               | 0.015 h                                                | 0.015 h                                 | Yes                                   | Yes g                        |
| Benzo(k)fluoranthene            | 0.012                                                                                                      | 1.37               | 0.015 h                                                | 0.015 h                                 | No                                    |                              |
| Chrysene                        | 0.018                                                                                                      | 13.7               | 0.12                                                   | 0.1 h                                   | No                                    | <del></del>                  |
| Fluoranthene                    | 0.034                                                                                                      | 3,200              | 64                                                     | 18.0                                    | No                                    | <del></del>                  |
| Indeno(1,2,3-cd)pyrene          | 0.014                                                                                                      | 1.37               | 0.33 h                                                 | 0.33 h                                  | +                                     |                              |
| Pyrene                          | 0.040                                                                                                      | 2,400              | 48                                                     | 192                                     | No                                    |                              |
| Aroclor-1260                    | 0.0034                                                                                                     | 0.5                | 0.017 h                                                | $\frac{192}{0.017^{\text{h}}}$          | No No                                 |                              |

#### Table 5. Comparison of Contaminant Concentrations to Action Levels for the 100-D-62, 100-D-77, and 100-D-83:1 Excavation Area **Decision Unit Verification Focused Samples. (2 Pages)**

|                    | T                            | Remed              | lial Action Goals                                      | (mg/kg) <sup>a</sup>                    | Does the                  | Does the                     |
|--------------------|------------------------------|--------------------|--------------------------------------------------------|-----------------------------------------|---------------------------|------------------------------|
| СОРС               | Maximum<br>Result<br>(mg/kg) | Direct<br>Exposure | Soil Cleanup<br>Level for<br>Groundwater<br>Protection | Soil Cleanup Level for River Protection | Result<br>Exceed<br>RAGs? | Result Pass RESRAD Modeling? |
| Endosulfan sulfate | 0.00033                      | 480                | 9.6                                                    | 0.0112                                  | No                        |                              |

RAGs obtained from the 100 Area RDR/RAWP (DOE-RL 2009b).

Hanford Site-specific background value is not available; it was not evaluated during background study. Value used is from Natural Background Soil Metals Concentrations in Washington State (Ecology 1994).

Where cleanup levels are less than background, cleanup levels default to background per WAC 173-340-700(4)(d) (Ecology 1996). The arsenic cleanup level of 20 mg/kg has been agreed to by the Tri-Party Agreement project managers as discussed in Section 2.1.2.1 of the 100 Area RDR/RAWP (DOE-RL 2009b).

d Carcinogenic cleanup level calculated based on the inhalation exposure pathway (WAC 173-340-750[3], Ecology 1996) using an airborne particulate mass-loading rate of 0.0001 g/m³ (Hanford Guidance for Radiological Cleanup [WDOH 1997]).

No Hanford Site-specific or Washington State background value available.

No parameters (bioconcentration factors or ambient water quality criteria values) are available from the Washington State Department of Ecology Cleanup Levels and Risk Calculations database or other databases to calculate cleanup levels (WAC 173-340-730[3][a][iii], 1996 [Method B for surface waters]).

Based on RESRAD modeling discussed in Appendix C of the 100 Area RDR/RAWP (DOE-RL 2009b), the residual concentrations of vanadium, benzo(a)pyrene, and benzo(b)fluoranthene are not predicted to migrate vertically within 1,000 years (based on the lowest distribution coefficient of the contaminants exceeding RAGs, benzo(b)fluoranthene, with a distribution coefficient value of 803 mL/g). The distance to groundwater from the bottom of the excavation area is 16.0 m (52.5 ft). Therefore, residual concentrations of these constituents are predicted to be protective of groundwater and the Columbia River.

Where cleanup levels are less than RDLs, cleanup levels default to RDLs per WAC 173-340-707(2) (Ecology 1996).

RDR/RAWP = Remedial Design Report/Remedial Action Work = not applicable = RESidual RADioactivity (dose model) RESRAD = background BG = total petroleum hydrocarbons TPH COPC = contaminant of potential concern = upper confidence limit UCL RAG = remedial action goal = Washington Administrative Code WAC RDL = required detection limit

Table 6. Comparison of Contaminant Concentrations to Action Levels for the 100-D-62, 100-D-77, and 100-D-83:1 Staging Pile Area Decision Unit Statistical Verification Samples. (2 Pages)

|                                 | G                                                                                                                                                              | Reme                                                         | dial Action Goals                                      | (mg/kg) <sup>a</sup>                    |                                       | Does the                     |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|---------------------------------------|------------------------------|
| СОРС                            | Statistical or<br>Maximum<br>Result <sup>b</sup><br>(mg/kg)                                                                                                    | Direct<br>Exposure                                           | Soil Cleanup<br>Level for<br>Groundwater<br>Protection | Soil Cleanup Level for River Protection | Does the<br>Result<br>Exceed<br>RAGs? | Result Pass RESRAD Modeling? |
| Antimony c                      | 0.87 ( <bg)< td=""><td>32</td><td>5 <sup>d</sup></td><td>5 <sup>d</sup></td><td>No</td><td></td></bg)<>                                                        | 32                                                           | 5 <sup>d</sup>                                         | 5 <sup>d</sup>                          | No                                    |                              |
| Arsenic                         | 2.5 ( <bg)< td=""><td>20 <sup>d</sup></td><td>20 <sup>d</sup></td><td>20 <sup>d</sup></td><td>No</td><td></td></bg)<>                                          | 20 <sup>d</sup>                                              | 20 <sup>d</sup>                                        | 20 <sup>d</sup>                         | No                                    |                              |
| Barium                          | 57.6 ( <bg)< td=""><td>5,600</td><td>200</td><td>400</td><td>No</td><td></td></bg)<>                                                                           | 5,600                                                        | 200                                                    | 400                                     | No                                    |                              |
| Beryllium                       | 0.18 ( <bg)< td=""><td>10.4 e</td><td>1.51 <sup>d</sup></td><td>1.51 <sup>d</sup></td><td>No</td><td></td></bg)<>                                              | 10.4 e                                                       | 1.51 <sup>d</sup>                                      | 1.51 <sup>d</sup>                       | No                                    |                              |
| Boron <sup>f</sup>              | 1.2                                                                                                                                                            | 7,200                                                        | 320                                                    | g                                       | No                                    |                              |
| Cadmium <sup>c</sup>            | 0.12 ( <bg)< td=""><td>13.9 e</td><td>0.81 <sup>d</sup></td><td>0.81 <sup>d</sup></td><td>No No</td><td></td></bg)<>                                           | 13.9 e                                                       | 0.81 <sup>d</sup>                                      | 0.81 <sup>d</sup>                       | No No                                 |                              |
| Chromium                        | 7.9 ( <bg)< td=""><td>80,000</td><td>18.5 <sup>d</sup></td><td>18.5 <sup>d</sup></td><td>No</td><td></td></bg)<>                                               | 80,000                                                       | 18.5 <sup>d</sup>                                      | 18.5 <sup>d</sup>                       | No                                    |                              |
| Cobalt                          | 7.6 ( <bg)< td=""><td>24</td><td>15.7 <sup>d</sup></td><td> g</td><td>No</td><td></td></bg)<>                                                                  | 24                                                           | 15.7 <sup>d</sup>                                      | g                                       | No                                    |                              |
| Copper                          | 15.2 ( <bg)< td=""><td>2,960</td><td>59.2</td><td>22.0 <sup>d</sup></td><td>No</td><td></td></bg)<>                                                            | 2,960                                                        | 59.2                                                   | 22.0 <sup>d</sup>                       | No                                    |                              |
| Hexavalent chromium f           | t chromium f                                                                                                                                                   |                                                              | No                                                     |                                         |                                       |                              |
| Lead                            | ganese 287 ( <bg) (<bg)="" 0.034="" 0.29="" 24="" 3,760="" 400<="" cury="" f="" td="" ybdenum=""><td>10.2 d</td><td></td><td>No</td><td><del></del></td></bg)> |                                                              | 10.2 d                                                 |                                         | No                                    | <del></del>                  |
| Manganese                       | 287 ( <bg)< td=""><td>3,760</td><td>512 <sup>d</sup></td><td>512 <sup>d</sup></td><td>No</td><td></td></bg)<>                                                  | 3,760                                                        | 512 <sup>d</sup>                                       | 512 <sup>d</sup>                        | No                                    |                              |
| Mercury                         | 0.034 ( <bg)< td=""><td>24</td><td>0.33 <sup>d</sup></td><td>0.33 <sup>d</sup></td><td></td><td></td></bg)<>                                                   | 24                                                           | 0.33 <sup>d</sup>                                      | 0.33 <sup>d</sup>                       |                                       |                              |
| Molybdenum f                    | 0.29                                                                                                                                                           | 400 8 <sup>g</sup> No<br>3G) 1,600 19.1 <sup>d</sup> 27.4 No |                                                        | <del></del>                             |                                       |                              |
| Nickel                          | 10.3 ( <bg)< td=""><td>1,600</td><td>19.1 <sup>d</sup></td><td>27.4</td><td></td><td></td></bg)<>                                                              | 1,600                                                        | 19.1 <sup>d</sup>                                      | 27.4                                    |                                       |                              |
| Vanadium                        | 52.8 ( <bg)< td=""><td>560</td><td>85.1 <sup>d</sup></td><td> g</td><td>No</td><td></td></bg)<>                                                                | 560                                                          | 85.1 <sup>d</sup>                                      | g                                       | No                                    |                              |
| Zinc                            | 43.0 ( <bg)< td=""><td>24,000</td><td>480</td><td>67.8 <sup>d</sup></td><td>No</td><td></td></bg)<>                                                            | 24,000                                                       | 480                                                    | 67.8 <sup>d</sup>                       | No                                    |                              |
| Chloride                        | 9.3 ( <bg)< td=""><td></td><td>25,000</td><td> g</td><td>No</td><td></td></bg)<>                                                                               |                                                              | 25,000                                                 | g                                       | No                                    |                              |
| Nitrogen in nitrate             | 1.7 ( <bg)< td=""><td>128,000</td><td>1,000</td><td>2,000</td><td>No</td><td><del></del></td></bg)<>                                                           | 128,000                                                      | 1,000                                                  | 2,000                                   | No                                    | <del></del>                  |
| Nitrogen in nitrite and nitrate | 1.5 ( <bg)< td=""><td>128,000</td><td>1,000</td><td>2,000</td><td>No</td><td></td></bg)<>                                                                      | 128,000                                                      | 1,000                                                  | 2,000                                   | No                                    |                              |
| Sulfate                         | 13.0 ( <bg)< td=""><td>NA</td><td>25,000</td><td> g</td><td>No</td><td><del></del></td></bg)<>                                                                 | NA                                                           | 25,000                                                 | g                                       | No                                    | <del></del>                  |
| TPH (diesel range)              | 5.9                                                                                                                                                            | 200                                                          | 200                                                    | 200                                     | No                                    |                              |
| TPH (diesel range extended)     | 14                                                                                                                                                             | 200                                                          | 200                                                    | 200                                     | No                                    |                              |
| Benzo(a)anthracene              | 0.018                                                                                                                                                          | 1.37                                                         | 0.015 h                                                | 0.015 h                                 | Yes                                   | Yesi                         |
| Benzo(a)pyrene                  | 0.033                                                                                                                                                          | 0.137                                                        | 0.015 h                                                | 0.015 h                                 | Yes                                   | Yes                          |
| Benzo(b)fluoranthene            |                                                                                                                                                                |                                                              |                                                        | Yes <sup>i</sup>                        |                                       |                              |
| Benzo(ghi)perylene j            | 0.025                                                                                                                                                          | 2,400                                                        | 48                                                     | 192                                     | No                                    |                              |
| Benzo(k)fluoranthene            | 0.0090                                                                                                                                                         | 1.37                                                         | 0.015 h                                                | 0.015 h                                 | No                                    |                              |
| Chrysene                        | 0.028 13.7 0.12 0.1 <sup>h</sup> No                                                                                                                            |                                                              |                                                        |                                         |                                       |                              |
| Fluoranthene                    | 0.046                                                                                                                                                          | 3,200                                                        | 64                                                     | 18.0                                    | No                                    |                              |
| Indeno(1,2,3-cd)pyrene          | 0.021                                                                                                                                                          | 1.37                                                         | 0.33 h                                                 | 0.33 h                                  | No                                    |                              |

Table 6. Comparison of Contaminant Concentrations to Action Levels for the 100-D-62, 100-D-77, and 100-D-83:1 Staging Pile Area Decision Unit Statistical Verification Samples. (2 Pages)

|              |       | Remed              | lial Action Goals                                      | (mg/kg) <sup>a</sup>                             | Does the                  | Does the                     |
|--------------|-------|--------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------|------------------------------|
| COPC         |       | Direct<br>Exposure | Soil Cleanup<br>Level for<br>Groundwater<br>Protection | Soil Cleanup<br>Level for<br>River<br>Protection | Result<br>Exceed<br>RAGs? | Result Pass RESRAD Modeling? |
| Pyrene       | 0.060 | 2,400              | 48                                                     | 192                                              | No                        |                              |
| Aroclor-1260 |       | 0.5                | 0.017 h                                                | 0.017 h                                          | No                        | <u> </u>                     |

RAGs obtained from the 100 Area RDR/RAWP (DOE-RL 2009b).

Maximum or 95% UCL, depending on data censorship, as described in the 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations (Appendix C).

Hanford Site-specific background value is not available; it was not evaluated during background study. Value used is from Natural Background Soil Metals Concentrations in Washington State (Ecology 1994).

d Where cleanup levels are less than background, cleanup levels default to background per WAC 173-340-700(4)(d) (Ecology 1996). The arsenic cleanup level of 20 mg/kg has been agreed to by the Tri-Party Agreement project managers as discussed in Section 2.1.2.1 of the 100 Area RDR/RAWP (DOE-RL 2009b).

<sup>e</sup> Carcinogenic cleanup level calculated based on the inhalation exposure pathway (WAC 173-340-750[3], Ecology 1996) using an airborne particulate mass-loading rate of 0.0001 g/m³ (Hanford Guidance for Radiological Cleanup [WDOH 1997]).

No Hanford Site-specific or Washington State background value available.

<sup>8</sup> No parameters (bioconcentration factors or ambient water quality criteria values) are available from the Washington State Department of Ecology Cleanup Levels and Risk Calculations database or other databases to calculate cleanup levels (WAC 173-340-730[3][a][iii], 1996 [Method B for surface waters]).

Where cleanup levels are less than RDLs, cleanup levels default to RDLs per WAC 173-340-707(2) (Ecology 1996).

Based on RESRAD modeling discussed in Appendix C of the 100 Area RDR/RAWP (DOE-RL 2009b), the residual concentrations of benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene are not predicted to migrate vertically within 1,000 years (based on the lowest distribution coefficient of the contaminants exceeding RAGs, benzo(a)anthracene, with a distribution coefficient value of 360 mL/g). The distance to groundwater from SPAs is approximately 24.5 m (80.4 ft). Therefore, residual concentrations of these constituents are predicted to be protective of groundwater and the Columbia River.

Toxicity data for this chemical are not available. Cleanup levels are based on the following surrogate chemicals:

Contaminant: benzo(g,h,i)perylene, surrogate: pyrene.

RESRAD= RESidual RADioactivity (dose model) = not applicable = staging pile area SPA = background BG= total petroleum hydrocarbons **TPH** = contaminant of potential concern COPC = upper confidence limit UCL = remedial action goal RAG = Washington Administrative Code WAC = required detection limit

RDR/RAWP = Remedial Design Report/Remedial Action Work Plan

Of the other PAH results for location EXC-3 (sample J1PW83 and duplicate J1PW93), only those results determined using EPA method 8310 are reported for cleanup evaluation in accordance with the VWI (WCH 2013e). Other PAH results are reported from the SVOC analysis by method 8270. The maximum results for benzo(a)anthracene (1.8 mg/kg) and benzo(b)fluoranthene (2.1 mg/kg) determined by method 8270 (SVOC analysis) exceed direct exposure RAGs. The EXC-3 location is the only location where PAH concentrations determined by method 8270 exceed direct exposure. The results are due to cross-contamination with asphalt. Therefore, the PAH results determined using EPA method 8270 are not considered for cleanup verification evaluation.

As discussed, multiple organics were measured above groundwater and/or river protection RAGs at the EXC-3 sample location due to cross-contamination of asphalt. Of these asphaltic

materials, carbazole was measured at 0.57 mg/kg, which is above the groundwater protection value of 0.438 mg/kg. Because of the low distribution coefficient ( $K_d$ ) for carbazole in the RDR/RAWP (DOE-RL 2009b),  $K_d$  = 3.39, inadequate vadose zone is available to demonstrate protection of groundwater. Carbazole was not detected at any other verification sample location. The presence of carbazole at the EXC-3 location (sample J1PW83 and duplicate J1PW93) is attributed to cross-contamination of asphalt and is not considered indicative of residual contamination from the waste sites. Therefore, the carbazole result is not evaluated for compliance with RAGs.

#### CLEANUP VERIFICATION DATA EVALUATION

This section demonstrates that remedial action at the 100-D-62, 100-D-77, and 100-D-83:1 waste sites achieves the applicable RAGs developed to support unrestricted land use at the 100 Area as established in the Remaining Sites ROD (EPA 1999) and documented in the 100 Area RDR/RAWP (DOE-RL 2009b).

#### Attainment of Radionuclide RAGS

Radionuclides were not COPCs for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites.

#### **Attainment of Nonradionuclide RAGS**

#### **Direct Exposure RAG Evaluation**

All COPCs from the 100-D-62, 100-D-77, and 100-D-83:1 waste sites were quantified below direct exposure RAGs. As discussed above, the presence of PAH (benzo(a)pyrene, benzo(a)anthracene, and benzo(b)fluoranthene) attributed to cross-contamination of asphalt are not considered for evaluation with direct exposure RAGs.

### Nonradionuclide Soil RAGs for Groundwater and River Protection Evaluation

All COPCs were quantified below groundwater and/or river protection soil RAGs with the exception of vanadium, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene. However, given the lowest soil  $K_d$  of these contaminants (chrysene) of 200 mL/g, none of the COPCs are expected to migrate vertically in 1,000 years based on RESidual RADioactivity (RESRAD) modeling discussed in Appendix C the 100 Area RDR/RAWP (DOE-RL 2009b). The vadose zone beneath the 100-D-62, 100-D-77, and 100-D-83:1 excavation area is approximately 16.0 m (52.5 ft) thick. Therefore, residual concentrations of all constituents exceeding groundwater and/or river protection soil RAGs are predicted to be protective of groundwater and the Columbia River.

#### Three-Part Test for Nonradionuclides

A RAG requirement for nonradionuclides is the WAC 173-340-740(7)(e) three-part test, which consists of the following criteria: (1) the cleanup verification 95% UCL value must be less than the cleanup level, (2) no single detection shall exceed two times the cleanup criteria, and (3) the percentage of samples exceeding the cleanup criteria must be less than 10% of the data set.

The application of the three-part test for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites is included in the statistical calculations, where half or more of the data set was detected (Appendix C). The results of this evaluation indicate that residual COPC concentrations pass the three-part test in comparison against applicable RAGs. Therefore, residual concentrations of COPCs are predicted to be protective of groundwater and the Columbia River.

An additional application of the three-part test is included for the statistical data sets that default to the maximum because less than half of the data set was detected. The results of this evaluation indicate that all residual COPC concentrations defaulting to the maximum value pass the three-part test in comparison against applicable RAGs, with the exception of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, indeno(1,2,3-cd)pyrene, and carbazole in the excavation area, and benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene in the SPAs. In the excavation area, the concentrations of benzo(a)anthracene and benzo(b)fluoranthene, as measured by SVOC analysis (EPA method 8270), above direct exposure RAGs and carbazole above groundwater/river protection RAGs were measured at the EXC-3 sample location. Cross-contamination from a former asphalt road was evident in the area of this sample location. Therefore, the concentrations of benzo(a)anthracene and benzo(b)fluoranthene measured above direct exposure RAGs by SVOC analysis and carbazole above groundwater protection RAGs at the EXC-3 location are attributed to cross-contamination of asphalt and are not evaluated for compliance with applicable RAGs. Residual concentrations of COPCs that fail one or more parts of the three-part test at the excavation area and SPAs, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene, are not predicted to migrate vertically within 1,000 years (based on the lowest K<sub>d</sub> of the contaminants exceeding RAGs, chrysene, with a K<sub>d</sub> value of 200 mL/g). The distance to groundwater from the excavation area and SPAs is 16.0 m (52.5 ft) and 24.5 m (80.4 ft), respectively. Therefore, residual concentrations of these constituents are predicted to be protective of groundwater and the Columbia River.

## Nonradionuclide Direct Contact Hazard Quotient and Carcinogenic Risk RAGs Attained

Nonradionuclide risk requirements include an individual hazard quotient of less than 1.0, a cumulative hazard quotient of less than 1.0, an individual contaminant carcinogenic risk of less than 1 x 10<sup>-6</sup>, and a cumulative carcinogenic risk of less than 1 x 10<sup>-5</sup>. The risk values were not calculated for constituents that were either not detected or were detected at concentrations below Hanford Site or Washington State background. All individual hazard quotients for noncarcinogenic constituents were less than 1.0. The cumulative hazard quotient for those noncarcinogenic constituents above background or detected levels is 2.1 x 10<sup>-1</sup>. The individual carcinogenic risk values for the carcinogenic constituents detected above background are less

than  $1 \times 10^{-6}$ , and the cumulative carcinogenic risk value was  $1.7 \times 10^{-6}$ , which is less than  $1 \times 10^{-5}$ . The 100-D-62, 100-D-77, and 100-D-83:1 waste sites meet the requirements for the direct contact hazard quotient and excess carcinogenic risk as identified in the RDR/RAWP (DOE-RL 2009b).

### Nonradionuclide Groundwater Hazard Quotient and Carcinogenic Risk RAGs Attained

Assessment of the risk requirements for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites included calculation of the hazard quotient and carcinogenic (excess cancer) risk values for groundwater protection for nonradionuclides. The requirements include an individual and cumulative hazard quotient of less than 1.0, an individual excess carcinogenic risk of less than 1 x 10<sup>-6</sup>, and a cumulative excess carcinogenic risk of less than 1 x 10<sup>-5</sup>. These risk values were conservatively calculated for the entire subsite using the highest value for each COPC from each of the decision units. Risk values were calculated for constituents that were detected at concentrations above Hanford Site or Washington State background values or for which there is no background value. In addition, the K<sub>d</sub> values for these contaminants are less than that necessary to show no migration to groundwater in 1,000 years based on RESRAD modeling discussed in Appendix C of the RDR/RAWP (DOE-RL 2009b). Based on this model and a vadose zone of approximately 16.0 m (52.5 ft) in thickness at the excavation, a K<sub>d</sub> of 4.6 or greater is required to show no predicted migration to groundwater in 1,000 years. All individual hazard quotients for noncarcinogenic constituents are less than 1.0. The cumulative hazard quotient for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites is 1.1 x 10<sup>-1</sup>, which is less than 1.0. The 100-D-62, 100-D-77, and 100-D-83:1 waste sites do not have any carcinogenic constituents subject to groundwater cancer risk calculation; therefore, the criterion for excess cancer risk is met. Therefore, nonradionuclide risk requirements related to groundwater are met.

#### **DATA QUALITY ASSESSMENT**

A data quality assessment (DQA) was performed on both the confirmatory and verification data. The DQA compared the sampling approach, the field logbooks (WCH 2012a, 2013a, 2013b, and 2013c), and resulting analytical data with the sampling and data quality requirements specified by the project objectives and performance specifications. The DQA for the 100-D-62, 100-D-77, and 100-D-83:1 waste sites established that the data are of the right type, quality, and quantity to support site verification decisions within specified error tolerances. The evaluation verified that the sample design was sufficient for the purpose of clean site verification. The cleanup verification sample analytical data are stored in the ENRE project-specific database for data evaluation prior to its archival in the HEIS and are summarized in Appendix C. The detailed DQA is presented in Appendix D.

#### **SUMMARY FOR INTERIM CLOSURE**

The 100-D-62, 100-D-77, and 100-D-83:1waste sites have been evaluated in accordance with the Remaining Sites ROD (EPA 1999) and the RDR/RAWP (DOE-RL 2009b). Verification sampling was performed and the analytical results indicate that the residual concentrations of

COPCs at this subsite meet the remedial action objectives for direct exposure, groundwater protection, and river protection. In accordance with this evaluation, the verification sampling results support a reclassification of the 100-D-62, 100-D-77, and 100-D-83:1 waste sites to Interim Closed Out. Contamination from the 100-D-62, 100-D-77, and 100-D-83:1 waste sites was removed from the deep zone (greater than 4.6 m [15 ft] bgs); therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone of the site are not required.

#### REFERENCES

- 40 CFR 141, "National Primary Drinking Water Regulations," Code of Federal Regulations, as amended.
- BHI, 2001, Calculation of Total Uranium Activity Corresponding to a Maximum Contaminant Level for Total Uranium of 30 Micrograms per Liter in Groundwater, 0100X-CA-V0038, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2005, 190-DR Process Water Pump House Below-Grade Concrete Structure Sampling and Analysis Plan, BHI-01771, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- DOE Order 5400.5, Radiation Protection of the Public and the Environment, as amended, U.S. Department of Energy, Washington, D.C.
- DOE-RL, 2009a, 100 Area Remedial Action Sampling and Analysis Plan, DOE/RL-96-22, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2009b, Remedial Design Report/Remedial Action Work Plan for the 100 Area, DOE/RL-96-17, Rev. 6, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2011, *Tri-Party Agreement Handbook Management Procedures*, RL-TPA-90-0001, Rev. 2, Guideline Number TPA-MP-14, "Maintenance of the Waste Information Data System (WIDS)," Rev. 1, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- Ecology, 1994, Natural Background Soil Metals Concentrations in Washington State, Publication No. 94-115, Washington State Department of Ecology, Olympia, Washington.
- Ecology, 1996, "Model Toxics Control Act Cleanup," Washington Administrative Code (WAC) 173-340, Washington State Department of Ecology, Olympia, Washington.
- Ecology, 2012, Cleanup Levels and Risk Calculations (CLARC) Database, Washington State Department of Ecology, Olympia, Washington, <a href="https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx">https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx</a>.

- ENV-1, Environmental Monitoring & Management, Washington Closure Hanford, Richland, Washington.
- EPA, 1989, Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A), Interim Final, EPA/540/1-89/002, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1999, Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Region 10, Seattle, Washington.
- EPA, 2009, Explanation of Significant Differences for the 100 Area Remaining Sites Interim Remedial Action Record of Decision, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Region 10, Seattle, Washington
- Gilbert, R. O., 1987, Statistical Methods for Environmental Pollution Monitoring, Wiley & Sons, Inc., New York, New York.
- WAC 173-340, 1996, "Model Toxics Control Act Cleanup," Washington Administrative Code.
- WCH, 2008a, "100-D-62 Remaining Site for Remedial Action," Interoffice Memorandum from J. M. Capron to R. A. Carlson, CCN 139066, Washington Closure Hanford, Richland, Washington, April 14.
- WCH, 2008b, "100-D-77 Remaining Site for Remedial Action," Interoffice Memorandum from M. L. Proctor to R. A. Carlson, CCN 142031, Washington Closure Hanford, Richland, Washington, November 18.
- WCH, 2010, "100-D-83:1 and 100-D-83:2 Pipelines Remaining Site for Remedial Action," Interoffice Memorandum from M. L. Proctor to S. W. Callison, CCN 148336, Washington Closure Hanford, Richland, Washington, January 4.
- WCH, 2012a, 100-D Field Remediation Project Sampling and Field Notes, Logbook EL-1607-14, pp. 69-71 and 86-89, Washington Closure Hanford, Richland, Washington.
- WCH 2012b, "100-D-77 Mercury Data," CCN 169077 to S. W. Callison, Washington Closure Hanford, Richland, Washington, from A. Kapell, Washington State Department of Ecology, December 19.
- WCH, 2012c, Work Instruction for Verification Sampling of the 100-D-50:6, 183-DR Clearwell Drain Pipelines Waste Site, 0100D-WI-G0109, Rev. 0, Washington Closure Hanford, Richland, Washington.

- WCH, 2013a, 100-D Field Remediation Miscellaneous Sampling Activities, Logbook EL-1662-01, pp. 76-78, Washington Closure Hanford, Richland, Washington.
- WCH, 2013b, 100-D Field Remediation Project Sampling and Field Notes, Logbook EL-1607-17, pp. 50-52 and 78-82, Washington Closure Hanford, Richland, Washington.
- WCH, 2013c, 100-D Field Remediation Project Sampling and Field Notes, Logbook EL-1607-18, pp. 37-39, Washington Closure Hanford, Richland, Washington.
- WCH, 2013d, Remaining Sites Verification Package for the 100-D-50:6, 183-DR Clearwell Pipelines, Attachment to Waste Site Reclassification Form 2013-011, Rev. 0, Washington Closure Hanford, Richland, Washington.
- WCH, 2013e, Work Instruction for Verification Sampling of the 100-D-77, 183-DR Water Treatment Facility; 100-D-62, 183-DR Headhouse Septic Tank; and 100-D-83:1, 183-DR Acid Addition Pipelines Waste Sites, 0100D-WI-G0117, Rev. 2, Washington Closure Hanford, Richland, Washington.
- WDOH, 1997, Hanford Guidance for Radiological Cleanup, WDOH/320-015, Rev. 1, Washington State Department of Health, Olympia, Washington.
- WHC, 1991, Summary of the Hanford Site Decontamination, Decommissioning, and Cleanup FY 1974 Through FY 1990, WHC-EP-0478, Westinghouse Hanford Company, Richland, Washington.

## APPENDIX A ECOLOGICAL RISK COMPARISON TABLE

Attachment to Waste Site Reclassification Forms 2013-077, 2013-078, and 2013-079

Table A-1. Maximum Contaminant Concentrations that Exceed Ecological Screening Levels for the 100-D-62, 100-D-77, and 100-D-83:1 Waste Sites a.

|                             |            | 2007 W          | AC 173-340 T | able 749-3   | EP     | A Ecological S | Soil Screenin      | ng Levels b            | Waste Site                 |
|-----------------------------|------------|-----------------|--------------|--------------|--------|----------------|--------------------|------------------------|----------------------------|
| Hazardous Substa            | nce        | Plants          | TAKE THE DI  |              | Plants | Soil Biota     | Avian <sup>c</sup> | Mammalian <sup>c</sup> | Analyses                   |
|                             |            |                 |              | tals (mg/kg) |        |                |                    |                        |                            |
|                             | Background |                 |              |              |        | 70             |                    | 0.27                   | 1.1 ( <bg)< th=""></bg)<>  |
| Antimony                    | 5          | 5               |              |              |        | 78             |                    | 0.27                   | 1.7                        |
| Boron                       |            | 0.5             |              |              |        |                |                    |                        |                            |
|                             | 512        | 1,100 d         |              | 1,500        | 220    | 450            | 4,300              | 4,000                  | 337 ( <bg)< td=""></bg)<>  |
| Manganese                   |            | 0.3             | 0.1          | 5.5          |        |                |                    |                        | 0.15 ( <bg)< td=""></bg)<> |
| Mercury, inorganic          | 0.33       | 0.3             | 0,1          |              |        |                | 7.8                | 280                    | 113                        |
| Vanadium                    | 85.1       |                 |              |              |        | 120            | 46                 | 79                     | 50.3 ( <bg)< td=""></bg)<> |
| Zinc                        | 67.8       | 86 <sup>d</sup> | 200          | 360          | 160    | 120            | 40                 | -                      |                            |
| High molecular weight PAH ° |            |                 | m-           |              |        | 18             |                    | 1.1                    | 3.9 <sup>f</sup>           |

NOTE. Shaded cells indicate screening values that are exceeded.

Exceedance of screening values does not necessarily indicate the existence of risk to ecological receptors. All exceedances must be evaluated in the context of additional lines of evidence for ecological effects following a baseline risk assessment for the river corridor portion of the Hanford Site, which will include a more complete quantitative ecological risk assessment.

b Available on the Internet at www.epa.gov/ecotox/ecossl.

<sup>c</sup> Wildlife.

Benchmark replaced by Washington State natural background concentration from Ecology, 1994, Natural Background Soil Metals Concentrations in Washington State, Publication 94-115, Washington State Department of Ecology, Olympia, Washington.

High molecular weight polynuclear aromatic hydrocarbons, e.g., benzo(a)anthracene, benzo(a)pyrene, benzo(g,h,i)perylene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz[a,h]anthracene, indeno[1,2,3-cd]pyrene, perylene, and pyrene.

<sup>f</sup> PAH contamination is attributed to cross-contamination from asphalt.

-- = not available

BG = background

EPA= U.S. Environmental Protection Agency

PAH = polycyclic aromatic hydrocarbons

WAC = Washington Administrative Code

# APPENDIX B IN-PROCESS SAMPLES

|          |         | e B-1. 100-D | -62, 10 | 0-D-77, 100 | I-D-83:1 W     |                   |      |      |       |      |     |        |       |      |                   |            | 70.4            |
|----------|---------|--------------|---------|-------------|----------------|-------------------|------|------|-------|------|-----|--------|-------|------|-------------------|------------|-----------------|
| Location | HEIS    | Sample       | Node    | Northing    | Easting        |                   | omid |      |       | lori |     |        | uorid | _    | Nitroger          |            |                 |
| 20044011 | Number  | Date         |         | 1,01 111179 |                | mg/kg             | Q    | -    | mg/kg | Q    | PQL |        | Q     | PQL  | mg/kg             |            | PQL             |
| 100-D-62 | J1H217  | 4/25/2011    | NA      | 151154      | 573256         | 0.5               | UN   | 0.5  | 19.9  |      | 2.5 | 1.1    | UN    | 1.1  | 331               |            | 2               |
| 100-D-62 | J1H230  | 4/25/2011    | NA      | 151154      | 573256         | 1                 | U    | 1    | 45.3  |      | 5.1 | 6.4    | В     | 2.1  | 0.82              | U          | 0.82            |
| 100-D-62 | J1HNK6  | 5/11/2011    | NA      | 151156      | 573256         |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-62 | J1HNK7  | 5/11/2011    | NA      | 151156      | 573256         |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | J1H213  | 4/25/2011    | NA      | 151222      | 573248         | 0.41              | U    | 0.41 | 2.1   | U    | 2.1 | 0.88   | UN    | 0.88 | 0.68              | В          | 0.34            |
| 100-D-77 | J1H215  | 5/4/2011     | NA      | 151192      | 573258         | 0.41              | U    | 0.41 | 2.1   | U    | 2.1 | 2.3    | BN    | 0.88 | 0.82              | В          | 0.33            |
| 100-D-77 | J1H216  | 4/25/2011    | NA      | 151185      | 573239         | 0.46              | U    | 0.46 | 4.5   | В    | 2.3 | 4.6    | В     | 0.97 | 0.69              | В          | 0.37            |
| 100-D-77 | J1J4W7  | 5/11/2011    | NA      |             |                | 0.5               | U    | 0.5  | 2.5   | U    | 2.5 | 1.8    | BN    | 1.1  | 10.2              |            | 0.4             |
| 100-D-77 | J1JW09  | 6/16/2011    | NA      | 151224.8    | 573251.1       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | J1JW 10 | 6/16/2011    | NA      | 151223.3    | 573253.2       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | J1K4D1  | 7/11/2011    | 1       | 151240.3    | 573255         | 0.4               | U    | 0.4  | 2.6   | В    | 2   | 0.84   | U     | 0.84 | 4.5               |            | 0.32            |
| 100-D-77 | J1K4D2  | 7/11/2011    | 2       | 151223.9    | 573255.5       | 0.47              | -    | 0.47 |       | U    | 2.4 |        | U     | 0.99 | 1.3               | В          | 0.38            |
| 100-D-77 | JIK4D3  | 7/11/2011    | 3       | 151222.8    | 573249.6       | 1                 | U    | 0.4  | 2.1   |      | 2   |        | BN    | 0.85 | 2.4               | В          | 0.33            |
| 100-D-77 | JIK4D4  | 7/11/2011    | 4       | 151208.1    | 573251.7       |                   | В    | 0.39 | 20.00 | В    | 2   |        | U     | 0.82 | 4.3               |            | 0.31            |
|          |         |              | 5       | 151204.6    | 573266.2       | 0.44              |      | 0.44 |       |      | 2.3 |        | U     | 0.94 | 0.7               | В          | 0.36            |
| 100-D-77 | J1K4D5  | 7/11/2011    | 6       | 151191.2    | 573260.1       | 0.39              |      | 0.39 |       |      | 2.3 |        | U     | 0.83 | 0.66              |            | 0.32            |
| 100-D-77 | J1K4D6  | 7/11/2011    | 100     |             |                | 7 - 7 - 7 - 7 - 7 |      |      |       |      | 1.9 |        | U     | 0.83 | 0.00              |            | 0.32            |
| 100-D-77 | J1K4D7  | 7/11/2011    | 7       | 151187.5    | 573233.9       | 0.38              |      | 0.38 | 1     |      | 1.9 | 1      | U     | 0.83 | 1.6               |            | 0.31            |
| 100-D-77 | J1K4D8  | 7/11/2011    | 8       | 151182.6    | 573251.6       | 0.39              |      | 0.39 |       |      |     |        |       |      |                   |            | 0.31            |
| 100-D-77 | J1K4D9  | 7/11/2011    | 9       | 151158.4    | 573257.6       | 0.38              |      | 0.38 | 1     |      | 1.9 |        | U     | 0.81 | 1.4               | В          |                 |
| 100-D-77 | J1K4F0  | 7/11/2011    | 10      | 151150.6    | 573254.9       | 0.39              |      | 0.39 |       |      | 2   |        | В     | 0.82 | 3.7               | -          | 0.31            |
| 100-D-77 | JIK4H7  | 7/6/2011     | NA      | 151223      | 573251         | 0.44              |      | 0.44 |       | U    | 2.2 |        | U     | 0.94 | 0.46              |            | 0.36            |
| 100-D-77 | J1K4H8  | 7/6/2011     | NA      | 151223      | 573250         | 0.42              |      | 0.42 |       |      | 2.1 |        | U     | 0.89 | 1.9               |            | 0.34            |
| 100-D-77 | JIK4H9  | 7/6/2011     | NA      | 151222      | 573247         | 0.41              | U    | 0.41 | 2.1   | U    | 2.1 | 0.87   | U     | 0.87 | 1.2               | В          | 0.33            |
| 100-D-77 | J1N0H9  | 12/15/2011   | NA      | 151241      | 573250.8       |                   |      |      |       |      |     |        |       |      |                   |            | -               |
| 100-D-77 | J1N0J0  | 12/15/2011   | NA      | 151234.4    | 573242.7       | Section 2         |      |      |       |      |     |        |       |      |                   | p          |                 |
| 100-D-77 | J1N0J1  | 12/15/2011   | NA      | 151225      | 573240.9       |                   |      |      |       | 1    |     |        |       |      |                   |            |                 |
| 100-D-77 | J1N0J2  | 12/15/2011   | NA      | 151220      | 573235.7       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | J1N0J3  | 12/15/2011   | NA      | 151212.7    | 573241.7       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | J1N0J4  | 12/15/2011   | NA      | 151180.1    | 573277.6       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | J1N0J5  | 12/15/2011   | NA      | 151184.4    | 573278.4       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | J1N0J6  | 12/15/2011   | NA      | 151186.1    | 573273.9       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | J1N0J7  | 12/15/2011   | NA      | 151190.1    | 573273.5       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | J1N0J8  | 12/15/2011   | NA      | 151196.9    | 573273.6       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | J1N0J9  | 12/19/2011   | NA      | 151207.8    | 573263.9       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | JINOKO  | 12/19/2011   | NA      | 151214.4    | 573270.5       |                   |      |      |       |      |     |        |       |      |                   |            | Section Section |
| 100-D-77 | JIN0K1  | 12/19/2011   | NA      | 151220.4    | 573267.2       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | JINOK2  | 12/19/2011   | NA      | 151219.6    | 573260.9       |                   |      |      |       |      |     |        |       |      |                   | - CHEATER  |                 |
|          |         |              |         | 151228.2    | 573265.3       |                   |      |      |       |      |     |        |       |      |                   |            |                 |
| 100-D-77 | JIN0K3  | 12/19/2011   | NA      | 1           | 573249.8       |                   |      |      | 1     |      |     | 1      |       | +    |                   | ********** |                 |
| 100-D-77 | JIN1K4  | 1/3/2012     | NA      | 151222.4    | 1              |                   | -    | 4    | -     |      | +   |        |       |      |                   |            |                 |
| 100-D-77 | JIN1K5  | 1/3/2012     | NA      | 151224.8    | 573252.4       |                   |      |      |       |      | -   |        |       | -    | recommende and    |            |                 |
| 100-D-77 | J1N1K6  | 1/3/2012     | NA      | 151229.6    | 573252.9       |                   |      |      | 1000  |      |     |        |       |      | -                 |            | ·               |
| 100-D-77 | JIN1K7  | 1/3/2012     | NA      | 151227.7    | 573258.1       | -                 |      |      | 1     |      |     |        |       |      | 1                 | 1          |                 |
| 100-D-77 | JIN1K8  | 1/3/2012     | NA      | 151221.6    | 573257.3       |                   |      |      |       |      |     |        |       | 0.0  | 1.3               |            | 0.2             |
| 100-D-77 | J1N215  | 1/9/2012     | NA      | 151222.8    | 7700 Tarasanan |                   | U    |      | 1     | U    |     |        |       |      | 1                 |            | 0.3             |
| 100-D-77 | J1N216  | 1/9/2012     | NA      | 151221.8    | 573249         | 100.00            | U    | 0.4  |       | U    |     | 0.84   |       | 0.84 |                   |            | 0.3             |
| 100-D-77 | J1N217  | 1/9/2012     | NA      | 151222.2    | 573249.6       |                   | U    | 0,4  |       | U    |     |        |       | 0.87 |                   | В          | 0.3             |
| 100-D-77 | J1N218  | 1/9/2012     | NA      | 151224.4    | 573251.6       | 0.4               |      | 0.4  |       | В    |     | 0.85   |       | 0.85 | The second second |            | 0.3             |
| 100-D-77 | J1N219  | 1/9/2012     | NA      | 151228.4    | 573254.8       | 0.39              |      | 0.39 |       | U    |     | 2 1.5  | (1)   | 0.83 |                   | В          | 0.3             |
| 100-D-77 | J1N220  | 1/9/2012     | NA      | 151225      | 573254.5       | 0.4               | U    | 0.4  |       | U    |     | 2 0.85 | 1000  | 0.85 |                   | В          | 0.3             |
| 100-D-77 | J1N221  | 1/9/2012     | NA      | 151223.8    | 573258         | 0.4               | U    | 0.4  | 1 2   | U    |     | 2 2    | В     | 0.84 |                   | В          | 0.3             |
| 100-D-77 | J1N222  | 1/9/2012     | NA      | 151183.7    | 573252.3       | 0.4               | U    | 0.4  | 4 2   | U    |     | 0.84   | U     | 0.84 | 0.53              | В          | 0.3             |
| 100-D-77 | J1N223  | 1/9/2012     | NA      | 151185      | 573255.3       | 0.4               | U    | 0.4  | 1 3.9 | В    | 2.  | 0.87   | U     | 0.87 | 0.64              | В          | 0.3             |
| 100-D-77 | J1N224  | 1/9/2012     | NA      | 151186.4    | 573257.6       | 0.4               | U    | 0.4  | 1 9.9 | )    | 2.  | 0.86   | U     | 0.86 | 0.72              | B          | 0.3             |

B - General chemistry and metals, estimated result. Result is less than the RL, but greater than MDL. Organics, analyte was found in the associated method blank as well as in the sample.

C - The analyte was detected in both the sample and the associated QC blank, and the sample concentration was </= 5X the blank concentration.

D - Sample results are obtained from a dilution, the surrogate or matrix spike recoveries reported are calculated from diluted samples.

J - Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

M - Sample duplicate precision not met.

N - Metals, recovery exceeds upper or lower control limits. General chemistry, MS, MSD: spike recovery exceeds upper or lower control limits. Organics, presumptive evidence of material.

P - Flag is used for an aroclor target analyte where there is greater than 25% difference for detected concentrations between the two GC columns

U - Analyzed for but not detected.

X - Metals, serial dilution in the analytical batch indicates that physical and chemical interferences are present. Organics, more than 40% difference between columns, lower result reported.

|          |                | le B-1. 100-I  |      |          |          |          |   |      | Nitroge |       |                          |        | phorou                                |        |                        |                                         |      |
|----------|----------------|----------------|------|----------|----------|----------|---|------|---------|-------|--------------------------|--------|---------------------------------------|--------|------------------------|-----------------------------------------|------|
| Location | HEIS<br>Number | Sample<br>Date | Node | Northing | Easting  | Nitroger |   |      | and     | Nitra | ate                      | ph     | os phat                               | e      |                        | ulfate                                  |      |
| 100 5 60 |                |                |      |          |          | mg/kg    | Q | PQL  | mg/kg   |       | _                        | mg/kg  | Q                                     | PQL    | mg/kg                  | Q                                       | PQL  |
| 100-D-62 | J1H217         | 4/25/2011      | NA   | 151154   | 573256   | 0.43     |   | 0.43 |         | DN    | 4.6                      | 1.6    |                                       | 1.6    | 2620                   |                                         | 11.  |
| 100-D-62 | J1H230         | 4/25/2011      | NA   | 151154   | 573256   | 0.87     | U | 0.87 | 0.93    | U     | 0.93                     | 3.2    | UN                                    | 3.2    | 593                    | 222000000000000000000000000000000000000 | 4.   |
| 100-D-62 | JIHNK6         | 5/11/2011      | NA   | 151156   | 573256   |          |   |      |         |       |                          |        | https://www.energite                  |        |                        |                                         |      |
| 100-D-62 | J1HNK7         | 5/11/2011      | NA   | 151156   | 573256   |          |   |      |         |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1H213         | 4/25/2011      | NA   | 151222   | 573248   | 0.36     |   | 0.36 | 0.62    |       | 0.38                     | 1.3    |                                       | 1.3    | 1480                   | DN                                      | 9.   |
| 100-D-77 | J1H215         | 5/4/2011       | NA   | 151192   | 573258   | 0.36     |   | 0.36 |         | BM    | 0.38                     | 1.3    | UN                                    | 1.3    | 56.2                   | -                                       | 1.   |
| 100-D-77 | J1H216         | 4/25/2011      | NA   | 151185   | 573239   | 0.4      | - | 0.4  | 0.67    | В     | 0.42                     | 1.5    | U                                     | 1.5    | 33.6                   | _                                       |      |
| 100-D-77 | J1J4W7         | 5/11/2011      | NA   |          |          | 0.43     | U | 0.43 | 10.1    |       | 0.45                     | 2      | BMN                                   | 1.6    | 2610                   | DN                                      | 11.  |
| 100-D-77 | J1JW09         | 6/16/2011      | NA   | 151224.8 | 573251.1 |          |   |      | 100     |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1JW 10        | 6/16/2011      | NA   | 151223.3 | 573253.2 |          |   |      |         |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1K4D1         | 7/11/2011      | 1    | 151240.3 | 573255   | 0.34     | U | 0.34 | 4.2     |       | 0.31                     | 1.3    | U                                     | 1.3    | 458                    |                                         | 1.   |
| 100-D-77 | J1K4D2         | 7/11/2011      | 2    | 151223.9 | 573255.5 | 0.4      | U | 0.4  | 1.8     |       | 0.37                     | 1.5    | U                                     | 1.5    | 695                    | D                                       | 10.  |
| 100-D-77 | J1K4D3         | 7/11/2011      | 3    | 151222.8 | 573249.6 | 0.35     | U | 0.35 | 2       |       | 0.31                     | 1.3    | UN                                    | 1.3    | 7010                   | DN                                      | 35.  |
| 100-D-77 | J1K4D4         | 7/11/2011      | 4    | 151208.1 | 573251.7 | 0.34     |   | 0.34 | 3.6     |       | 0.3                      | 1.2    | U                                     | 1.2    | 62.4                   |                                         | 1.   |
| 100-D-77 | J1K4D5         | 7/11/2011      | 5    | 151204.6 | 573266.2 | 0.38     | U | 0.38 | 0.84    | BM    | 0.35                     | 1.4    | U                                     | 1.4    | 3.0                    |                                         |      |
| 100-D-77 | J1K4D6         | 7/11/2011      | 6    | 151191.2 | 573260.1 | 0.34     | U | 0.34 | 0.66    | В     | 0.3                      | 1.3    | U                                     | 1.3    | 320                    |                                         | 1.   |
| 100-D-77 | J1K4D7         | 7/11/2011      | 7    | 151187.5 | 573233.9 | 0.33     | U | 0.33 | 0.9     |       | 0.3                      | 1.2    | U                                     | 1.2    | 90.7                   |                                         | 1.   |
| 100-D-77 | J1K4D8         | 7/11/2011      | 8    | 151182.6 | 573251.6 | 0.34     | U | 0.34 | 0.3     | В     | 0.3                      | 1.3    | U                                     | 1.3    | 135                    |                                         | 1.   |
| 100-D-77 | J1K4D9         | 7/11/2011      | 9    | 151158.4 | 573257.6 | 0.33     | U | 0.33 | 1.2     |       | 0.3                      | 1.2    | U                                     | 1.2    | 21.6                   |                                         | 1.   |
| 100-D-77 | J1K4F0         | 7/11/2011      | 10   | 151150.6 | 573254.9 | 0.34     | U | 0.34 | 4.1     |       | 0.3                      | 1.2    | U                                     | 1.2    | 233                    |                                         | 1.   |
| 100-D-77 | J1K4H7         | 7/6/2011       | NA   | 151223   | 573251   | 0.38     | U | 0.38 | 0.45    | В     | 0.32                     | 1.4    | U                                     | 1.4    | 4360                   | D                                       | 19.  |
| 100-D-77 | J1K4H8         | 7/6/2011       | NA   | 151223   | 573250   | 0.36     | U | 0.36 | 2       |       | 0.34                     | 1.3    | UN                                    | 1.3    | 17400                  | DN                                      | 93.  |
| 100-D-77 | J1K4H9         | 7/6/2011       | NA   | 151222   | 573247   | 0.36     | U | 0.36 | 1.4     |       | 0.33                     | 1.3    | U                                     | 1.3    | 14600                  | D                                       | 9    |
| 100-D-77 | J1N0H9         | 12/15/2011     | NA   | 151241   | 573250.8 |          |   |      |         |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1N0J0         | 12/15/2011     | NA   | 151234.4 | 573242.7 |          |   |      |         |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1N0J1         | 12/15/2011     | NA   | 151225   | 573240.9 |          |   |      |         |       | or got                   |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1N0J2         | 12/15/2011     | NA   | 151220   | 573235.7 |          |   |      | -       |       |                          |        |                                       | DI DIE |                        |                                         |      |
| 100-D-77 | J1N0J3         | 12/15/2011     | NA   | 151212.7 | 573241.7 |          |   |      | THE S   |       |                          |        | THE STATE OF                          |        |                        |                                         |      |
| 100-D-77 | J1N0J4         | 12/15/2011     | NA   | 151180.1 | 573277.6 |          |   |      | -       |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1N0J5         | 12/15/2011     | NA   | 151184.4 | 573278.4 |          |   |      |         |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1N0J6         | 12/15/2011     | NA   | 151186.1 | 573273.9 |          |   |      |         |       |                          | 1000   |                                       |        |                        |                                         |      |
| 100-D-77 | J1N0J7         | 12/15/2011     | NA   | 151190.1 | 573273.5 |          |   |      |         |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1N0J8         | 12/15/2011     | NA   | 151196.9 | 573273.6 |          |   |      |         |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1N0J9         | 12/19/2011     | NA   | 151207.8 | 573263.9 |          |   | 2000 |         |       |                          |        | -                                     |        |                        |                                         |      |
| 100-D-77 | J1N0K0         | 12/19/2011     | NA   | 151214.4 | 573270.5 |          |   |      |         |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1N0K1         | 12/19/2011     | NA   | 151220.4 | 573267.2 |          |   |      |         |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1N0K2         | 12/19/2011     | NA   | 151219.6 | 573260.9 |          |   |      |         |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1N0K3         | 12/19/2011     | NA   | 151228.2 | 573265.3 |          |   |      |         |       |                          |        | · · · · · · · · · · · · · · · · · · · |        |                        |                                         |      |
| 100-D-77 | J1N1K4         | 1/3/2012       | NA   | 151222.4 | 573249.8 |          |   |      |         |       |                          |        |                                       |        | C. Grammina Carrollina |                                         |      |
| 100-D-77 | JIN1K5         | 1/3/2012       | NA   | 151224.8 | 573252.4 |          |   |      |         |       |                          |        |                                       |        |                        |                                         |      |
| 100-D-77 | JIN1K6         | 1/3/2012       | NA   | 151229.6 | 573252.9 |          |   |      |         | X I   | other construction       |        |                                       |        |                        |                                         |      |
| 100-D-77 | JINIK7         | 1/3/2012       | NA   | 151227.7 | 573258.1 |          |   |      |         |       | - married to the control |        |                                       |        |                        |                                         |      |
| 100-D-77 | J1N1K8         | 1/3/2012       | NA   | 151221.6 | 573257.3 |          |   |      |         |       |                          | 150000 | V:                                    |        |                        |                                         |      |
| 100-D-77 | J1N215         | 1/9/2012       | NA   | 151222.8 | 573248.9 | 0.37     | U | 0.37 | 0.55    | ВМ    | 0.32                     | 1.4    | UN                                    | 1.4    | 4710                   | DN                                      | 1    |
| 100-D-77 | J1N216         | 1/9/2012       | NA   | 151221.8 | 573249   | 0.34     | U | 0.34 | 0.32    |       | 0.32                     | 1.3    | U                                     | 1.3    | 3360                   | 1                                       | 17.0 |
| 100-D-77 | J1N217         | 1/9/2012       | NA   | 151222.2 | 573249.6 | 0.36     |   | 0.36 | 0.83    |       | 0.31                     | 1.3    | U                                     | 1.3    | 3640                   |                                         | 18.  |
| 100-D-77 | J1N218         | 1/9/2012       | NA   | 151224.4 | 573251.6 | 0.35     |   | 0.35 | 0.53    | В     | 0.3                      | 1.3    | U                                     | 1.3    | 1940                   |                                         | 8.   |
| 100-D-77 | J1N219         | 1/9/2012       | NA   | 151228.4 | 573254.8 | 0.34     |   | 0.34 | 0.42    |       | 0.3                      | 1.3    | U                                     | 1.3    | 694                    |                                         | 8.   |
| 100-D-77 | J1N220         | 1/9/2012       | NA   | 151225   | 573254.5 | 0.35     |   | 0.35 | 0.97    | -     | 0.3                      | 1.3    | U                                     | 1.3    | 1300                   |                                         | 0.   |
| 100-D-77 | J1N221         | 1/9/2012       | NA   | 151223.8 | 573258   | 0.34     |   | 0.34 | 0.48    | R     | 0.3                      | 1.3    | U                                     | 1.3    | 408                    |                                         | 1.   |
| 100-D-77 | J1N222         | 1/9/2012       | NA   | 151183.7 | 573252.3 | 0.34     |   | 0.34 | 0.48    |       | 0.3                      | 1.3    | U                                     | 1.3    |                        | BC                                      | 1.5  |
| 100-D-77 | J1N223         | 1/9/2012       | NA   | 151185   | 573255.3 | 0.35     |   | 0.35 | 0.32    | _     | 0.32                     | 1.3    | U                                     | 1.3    | 16.3                   | DC                                      | 1.6  |
| 100-D-77 | J1N224         | 1/9/2012       | NA   | 151186.4 | 573257.6 | 0.35     |   | 0.35 | 0.35    |       | 0.32                     | 1.3    | U                                     | 1.3    | 26                     | -                                       | 1.5  |

|          |         | and I      | n-Proce | ess Samples | - Anions. ( |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|----------|---------|------------|---------|-------------|-------------|-------|-------------------|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Location | HEIS    | Sample     | Node    | Northing    | Easting     |       | lfide             |     |            | рΗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l nor |
|          | Number  | Date       |         |             |             | mg/kg | Q                 | PQL | pH         | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PQL   |
| 100-D-62 | J1H217  | 4/25/2011  | NA      | 151154      | 573256      |       |                   |     | 7.41       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-62 | J1H230  | 4/25/2011  | NA      | 151154      | 573256      |       |                   |     | 10.7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-62 | J1HNK6  | 5/11/2011  | NA      | 151156      | 573256      |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-62 | J1HNK7  | 5/11/2011  | NA      | 151156      | 573256      |       |                   |     | 7.15       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-77 | J1H213  | 4/25/2011  | NA      | 151222      | 573248      |       |                   |     | 5.15       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-77 | J1H215  | 5/4/2011   | NA      | 151192      | 573258      |       |                   |     | 11.8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-77 | J1H216  | 4/25/2011  | NA      | 151185      | 573239      |       |                   |     | 9.88       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-77 | J1J4W7  | 5/11/2011  | NA      |             |             |       |                   |     | 3.7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-77 | J1JW09  | 6/16/2011  | NA      | 151224.8    | 573251.1    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1JW 10 | 6/16/2011  | NA      | 151223.3    | 573253.2    |       |                   |     | 0.00       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-77 | J1K4D1  | 7/11/2011  | 1       | 151240.3    | 573255      |       |                   |     | 8.22       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-77 | J1K4D2  | 7/11/2011  | 2       | 151223.9    | 573255.5    |       |                   |     | 8.11       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-77 | J1K4D3  | 7/11/2011  | 3       | 151222.8    | 573249.6    | 2.20  |                   |     | 7.32       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01  |
| 100-D-77 | J1K4D4  | 7/11/2011  | 4       | 151208.1    | 573251.7    |       |                   |     | 8.77       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-77 | J1K4D5  | 7/11/2011  | 5       | 151204.6    | 573266.2    |       |                   |     | 9.34       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1K4D6  | 7/11/2011  | 6       | 151191.2    | 573260.1    |       |                   |     | 9.36       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1K4D7  | 7/11/2011  | 7       | 151187.5    | 573233.9    |       |                   |     | 9.41       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01  |
| 100-D-77 | J1K4D8  | 7/11/2011  | 8       | 151182.6    | 573251.6    |       |                   |     | 9.57       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1K4D9  | 7/11/2011  | 9       | 151158.4    | 573257.6    |       |                   |     | 8.89       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1K4F0  | 7/11/2011  | 10      | 151150.6    | 573254.9    |       |                   |     | 8.54       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1K4H7  | 7/6/2011   | NA      | 151223      | 573251      |       |                   |     | 4.92       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1K4H8  | 7/6/2011   | NA      | 151223      | 573250      |       |                   |     | 4.69       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1K4H9  | 7/6/2011   | NA      | 151222      | 573247      |       |                   |     | 5.9        | UN OTOMOGRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0   |
| 100-D-77 | J1N0H9  | 12/15/2011 | NA      | 151241      | 573250.8    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0J0  | 12/15/2011 | NA      | 151234.4    | 573242.7    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0J1  | 12/15/2011 | NA      | 151225      | 573240.9    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0J2  | 12/15/2011 | NA      | 151220      | 573235.7    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0J3  | 12/15/2011 | NA      | 151212.7    | 573241.7    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0J4  | 12/15/2011 | NA      | 151180.1    | 573277.6    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0J5  | 12/15/2011 | NA      | 151184.4    | 573278.4    | 67.00 |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0J6  | 12/15/2011 | NA      | 151186.1    | 573273.9    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0J7  | 12/15/2011 | NA      | 151190.1    | 573273.5    | 2000  |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0J8  | 12/15/2011 | NA      | 151196.9    | 573273.6    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0J9  | 12/19/2011 | NA      | 151207.8    | 573263.9    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0K0  | 12/19/2011 | NA      | 151214.4    | 573270.5    | *     |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0K1  | 12/19/2011 | NA      | 151220.4    | 573267.2    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0K2  | 12/19/2011 | NA      | 151219.6    | 573260.9    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N0K3  | 12/19/2011 | NA      | 151228.2    | 573265.3    |       |                   |     | december 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N1K4  | 1/3/2012   | NA      | 151222.4    | 573249.8    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N1K5  | 1/3/2012   | NA      | 151224.8    | 573252.4    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | JIN1K6  | 1/3/2012   | NA      | 151229.6    | 573252.9    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | JINIK7  | 1/3/2012   | NA      | 151227.7    | 573258.1    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N1K8  | 1/3/2012   | NA      | 151221.6    | 573257.3    |       |                   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 100-D-77 | J1N215  | 1/9/2012   | NA      | 151222.8    | 573248.9    | 7.8   | Spirit Sharehouse | 2.6 | 5.24       | NOTICE AND ADDRESS OF THE PARTY | 0.0   |
| 100-D-77 | J1N216  | 1/9/2012   | NA      | 151221.8    | 573249      | 2.6   | U                 | 2.6 | 5.22       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1N217  | 1/9/2012   | NA      | 151222.2    | 573249.6    | 2.6   |                   | 2.6 | 5.62       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1N218  | 1/9/2012   | NA      | 151224.4    | 573251.6    | 2.5   |                   | 2.5 | 6.41       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1N219  | 1/9/2012   | NA      | 151228.4    | 573254.8    | 1     | BN                | 2.5 | 7.52       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1N220  | 1/9/2012   | NA      | 151225      | 573254.5    | 2.5   |                   | 2.5 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1N221  | 1/9/2012   | NA      | 151223.8    | 573258      | 2.4   |                   | 2.4 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1N222  | 1/9/2012   | NA      | 151183.7    | 573252.3    | 4.2   |                   | 2.5 | 9.46       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1N223  | 1/9/2012   | NA      | 151185      | 573255.3    | 2.5   |                   | 2.5 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |
| 100-D-77 | J1N224  | 1/9/2012   | NA      | 151186.4    | 573257.6    |       | U                 | 2.5 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0   |

|                      | 1           | 2. 100-D-62, 1 |          |          |          |       |      |       |       |      | 1.10  |      | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                 |       |       |
|----------------------|-------------|----------------|----------|----------|----------|-------|------|-------|-------|------|-------|------|-----------------------------------------|-----------------|-------|-------|
| Location             | HEIS Number | Sample Date    | Northing | Easting  | Alu      | min   | um   | Ar    | ntimo | ny   | A     | rsen | ic                                      | 1               | Bariu | m     |
|                      |             |                |          |          | mg/kg    | Q     | PQL  | mg/kg | Q     | PQL  | mg/kg | Q    | PQL                                     | mg/kg           | Q     | PQL   |
| 100-D-62             | J1H217      | 4/25/2011      | 151154   | 573256   | 8100     |       | 1.9  | 1.7   |       | 0.46 | 6.9   |      | 0.8                                     | 1550            |       | 0.09  |
| 100-D-62             | J1H230      | 4/25/2011      | 151154   | 573256   | 7790     |       | 4    | 5.5   |       | 0.97 | 17.8  | M    | 1.7                                     | 2030            |       | 0.1   |
| 100-D-62             | J1HNK6      | 5/11/2011      | 151156   | 573256   | 7. T. S. |       |      |       |       |      |       |      |                                         | 4.0             |       |       |
| 100-D-62             | J1HNK7      | 5/11/2011      | 151156   | 573256   |          |       |      |       |       |      |       |      |                                         | 1.5             |       |       |
| 100-D-77             | J1H213      | 4/25/2011      | 151222   | 573248   | 7240     |       | 1.6  | 0.4   | U     | 0.4  | 3.3   |      | 0.7                                     | 69.2            |       | 0.0   |
| 100-D-77             | J1H215      | 5/4/2011       | 151192   | 573258   | 7340     | X     | 1.5  | 0.4   | В     | 0.38 | 4.3   |      | 0.65                                    | 106             | XN    | 0.07  |
| 100-D-77             | J1H216      | 4/25/2011      | 151185   | 573239   | 70600    |       | 1.7  | 61.7  |       | 0.41 | 18.7  |      | 0.72                                    | 77.2            |       | 0.08  |
| 100-D-77             | J1J4W7      | 5/11/2011      |          |          | 51800    |       | 16.9 | 0.41  | U     | 0.41 | 0.72  | U    | 0.72                                    | 15.1            |       | 0.08  |
| 100-D-77             | J1JW09      | 6/16/2011      | 151224.8 | 573251.1 |          |       |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | J1JW 10     | 6/16/2011      | 151223.3 | 573253.2 |          |       |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | JIK4D1      | 7/11/2011      | 151240.3 | 573255   | 5400     | X     | 1.4  | 0.88  |       | 0.33 | 2.1   |      | 0.58                                    | 58.6            | X     | 0.06  |
| 100-D-77             | J1K4D2      | 7/11/2011      | 151223.9 | 573255.5 | 7390     | X     | 1.9  | 0.51  | В     | 0.46 | 2.5   |      | 0.79                                    | 61.8            |       | 0.09  |
| 100-D-77             | J1K4D3      | 7/11/2011      | 151222.8 | 573249.6 | 6440     | X     | 1.5  | 0.6   |       | 0.38 | 2.3   |      | 0.65                                    | 52.9            |       | 0.07  |
| 100-D-77             | J1K4D4      | 7/11/2011      | 151208.1 | 573251.7 | 6050     |       | 1.3  | 0.6   |       | 0.32 | 1.5   |      | 0.56                                    |                 |       | 0.06  |
| 100-D-77             | J1K4D5      | 7/11/2011      | 151204.6 | 573266.2 | 5860     | X     | 1.7  | 1.4   |       | 0.42 | 2     |      | 0.73                                    | 61.9            |       | 0.08  |
| 100-D-77             | J1K4D6      | 7/11/2011      | 151191.2 | 573260.1 | 8660     | X     | 1.3  | 1.2   |       | 0.33 | 5     |      | 0.57                                    | 210             |       | 0.06  |
| 100-D-77             | J1K4D7      | 7/11/2011      | 151187.5 | 573233.9 | 5840     | X     | 1.5  | 0.73  |       | 0.38 | 2.1   |      | 0.66                                    | 54.8            |       | 0.07  |
| 100-D-77             | J1K4D8      | 7/11/2011      | 151182.6 | 573251.6 | 5650     |       | 1.4  | 0.88  |       | 0.35 | 2.9   |      | 0.61                                    | 89.9            |       | 0.0   |
| 100-D-77             | J1K4D9      | 7/11/2011      | 151158.4 | 573257.6 | 1        | X     | 1.4  | 0.5   | В     | 0.34 | 2.6   | _    | 0.58                                    | 59.9            |       | 0.06  |
| 100-D-77             | J1K4F0      | 7/11/2011      | 151150.6 | 573254.9 | 6640     |       | 1.4  | 0.7   | D     | 0.35 | 2.4   |      | 0.61                                    |                 | X     | 0.00  |
| 100-D-77             | J1K4H7      | 7/6/2011       | 151223   | 573251   | 4670     |       | 1.6  | 0.38  | U     | 0.38 | 2.4   |      | 0.66                                    | 41.8            |       | 0.07  |
| 100-D-77             | J1K4H8      | 7/6/2011       | 151223   | 573250   | 1470     |       | 1.7  | 0.30  | U     | 0.4  | 0.89  | В    | 0.7                                     | 95.6            |       | 0.08  |
| 100-D-77             | J1K4H9      | 7/6/2011       | 151222   | 573247   | 2110     |       | 1.6  | 0.4   | U     | 0.4  | 0.89  | U    | 0.7                                     | 103             |       | 0.0   |
| 100-D-77             | J1N0H9      | 12/15/2011     | 151241   | 573250.8 | 2110     | ^     | 1.0  | 0.4   | U     | 0.4  | 0.7   | U    | 0.7                                     | 103             | ^     | 0.0   |
| 100-D-77             | JINOJO      | 12/15/2011     | 151234.4 | 573242.7 |          |       |      |       |       | 1    |       |      |                                         |                 |       |       |
| 100-D-77             | J1N0J1      | 12/15/2011     | 151225   | 573240.9 |          |       |      |       |       |      |       |      |                                         | -               |       |       |
| 100-D-77             | J1N0J2      | 12/15/2011     | 151220   | 573235.7 |          |       |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | J1N0J3      | 12/15/2011     | 151212.7 | 573241.7 |          |       |      |       |       | -    |       |      | 1                                       |                 |       |       |
| 100-D-77             | J1N0J4      | 12/15/2011     | 151180.1 | 573277.6 |          |       |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | J1N0J5      | 12/15/2011     | 151184.4 | 573278.4 |          |       |      |       |       |      |       |      |                                         | 3 11 TO 11 TO 1 |       |       |
| 100-D-77             | J1N0J6      | 12/15/2011     |          | 573273.9 |          |       |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | J1N0J7      |                | 151186.1 |          |          |       |      |       |       |      |       |      |                                         |                 |       |       |
|                      |             | 12/15/2011     | 151190.1 | 573273.5 |          |       |      |       |       | -    |       |      |                                         | bandanin d      |       |       |
| 100-D-77<br>100-D-77 | J1N0J8      | 12/15/2011     | 151196.9 | 573273.6 |          |       |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | J1N0J9      | 12/19/2011     | 151207.8 | 573263.9 |          |       |      |       |       |      |       |      |                                         |                 |       |       |
|                      | J1N0K0      | 12/19/2011     | 151214.4 | 573270.5 |          |       |      |       |       |      |       |      |                                         |                 | -     |       |
| 100-D-77<br>100-D-77 | J1N0K1      | 12/19/2011     | 151220.4 | 573267.2 |          |       |      |       |       | -    |       |      |                                         |                 |       |       |
|                      | J1N0K2      | 12/19/2011     | 151219.6 | 573260.9 |          |       |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | J1N0K3      | 12/19/2011     | 151228.2 | 573265.3 |          |       | -    |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | JINIK4      | 1/3/2012       | 151222.4 | 573249.8 |          | -     |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | JINIK5      | 1/3/2012       | 151224.8 | 573252.4 |          |       |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | JINIK6      | 1/3/2012       | 151229.6 | 573252.9 |          |       |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | J1N1K7      | 1/3/2012       | 151227.7 | 573258.1 |          |       |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | J1N1K8      | 1/3/2012       | 151221.6 | 573257.3 | (3)/392  | 16000 |      |       |       |      |       |      |                                         |                 |       |       |
| 100-D-77             | J1N215      | 1/9/2012       | 151222.8 | 573248.9 | 3560     |       | 1.4  | 0.35  | U     | 0.35 | 0.61  | U    | 0.61                                    | 44.4            |       | 0.0   |
| 100-D-77             | J1N216      | 1/9/2012       | 151221.8 | 573249   | 4680     |       | 1.4  | 0.35  | U     | 0.35 | 0.61  | В    | 0.61                                    | 48.8            |       | 0.0   |
| 100-D-77             | J1N217      | 1/9/2012       | 151222.2 | 573249.6 | 4340     |       | 1.6  | 0.39  | U     | 0.39 | 0.68  | U    | 0.68                                    | 41.5            |       | 0.07  |
| 100-D-77             | J1N218      | 1/9/2012       | 151224.4 | 573251.6 | 4580     |       | 1.5  | 0.36  | U     | 0.36 |       | В    | 0.62                                    | 45.7            |       | 0.07  |
| 100-D-77             | J1N219      | 1/9/2012       | 151228.4 | 573254.8 | 3830     |       | 1.6  | 0.39  | U     | 0.39 | 0.87  | В    | 0.67                                    | 52.2            | X     | 0.07  |
| 100-D-77             | J1N220      | 1/9/2012       | 151225   | 573254.5 | 4940     |       | 1.4  | 0.34  | U     | 0.34 | 0.93  |      | 0.59                                    | 51              |       | 0.06  |
| 100-D-77             | J1N221      | 1/9/2012       | 151223.8 | 573258   | 3970     |       | 1.4  | 0.35  | U     | 0.35 | 0.67  | В    | 0.61                                    | 49 3            | X     | 0.0   |
| 100-D-77             | J1N222      | 1/9/2012       | 151183.7 | 573252.3 | 4440     | X     | 1.5  | 0.38  | U     | 0.38 | 0.81  | В    | 0.65                                    | 50.9            | X     | 0.07  |
| 100-D-77             | J1N223      | 1/9/2012       | 151185   | 573255.3 | 4750     | X     | 1.5  | 0.37  | U     | 0.37 | 1.2   |      | 0.64                                    | 48.6            | X     | 0.073 |
| 100-D-77             | J1N224      | 1/9/2012       | 151186.4 | 573257.6 | 4990     | X     | 1.4  | 0.34  | U     | 0.34 | 1.8   | M    | 0.6                                     | 61              | X     | 0.06  |

| Location | HEIS Number | Sample Date | Northing | Easting  | Ber   | ylliu | m                  |          | Boron                   |      | Ca    | dmiu       | m     |        | alciu |        |
|----------|-------------|-------------|----------|----------|-------|-------|--------------------|----------|-------------------------|------|-------|------------|-------|--------|-------|--------|
|          |             |             |          |          | mg/kg | _     | PQL                | mg/kg    | Q                       | _    | mg/kg | Q          | PQL   | mg/kg  | Q     | PQL    |
| 100-D-62 | J1H217      | 4/25/2011   | 151154   | 573256   | 0.04  | U     | 0.04               | 6.7      |                         | 1.2  | 5.8   |            | 0.05  | 14300  |       | 17.2   |
| 100-D-62 | J1H230      | 4/25/2011   | 151154   | 573256   | 0.084 | U     | 0.08               | 7.9      | M                       | 2.5  | 6.3   | Sessionary | 0.1   | 24300  | MN    | 36     |
| 100-D-62 | J1HNK6      | 5/11/2011   | 151156   | 573256   |       |       |                    | <u> </u> |                         |      |       |            |       |        |       |        |
| 100-D-62 | J1HNK7      | 5/11/2011   | 151156   | 573256   |       |       |                    |          |                         |      |       |            |       | \$2.52 |       |        |
| 100-D-77 | J1H213      | 4/25/2011   | 151222   | 573248   | 0.056 |       | 0.04               | 1        | U                       | 1    | 0.051 | _          | 0.043 | 4270   | -     | 14.9   |
| 100-D-77 | J1H215      | 5/4/2011    | 151192   | 573258   | 0.033 | В     | 0.03               | 3.9      |                         | 0.97 | 0.18  | BM         | 0.04  | 39000  | X     | 13.9   |
| 100-D-77 | J1H216      | 4/25/2011   | 151185   | 573239   | 0.31  |       | 0.04               | 6.3      |                         | 1.1  | 0.49  |            | 0.045 | 11400  |       | 15.4   |
| 100-D-77 | J1J4W7      | 5/11/2011   |          |          | 0.073 | В     | 0.04               | 1.2      | В                       | 1.1  | 0.14  | В          | 0.045 | 166    |       | 15.4   |
| 100-D-77 | J1JW09      | 6/16/2011   | 151224.8 | 573251.1 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | J1JW 10     | 6/16/2011   | 151223.3 | 573253.2 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | J1K4D1      | 7/11/2011   | 151240.3 | 573255   | 0.029 | U     | 0.03               | 0.86     | U                       | 0.86 | 0.087 | В          | 0.036 | 5740   |       | 12.4   |
| 100-D-77 | J1K4D2      | 7/11/2011   | 151223.9 | 573255.5 | 0.04  | U     | 0.04               | 1.5      | В                       | 1.2  | 0.12  | В          | 0.049 | 9500   |       | 17     |
| 100-D-77 | J1K4D3      | 7/11/2011   | 151222.8 | 573249.6 | 0.033 | U     | 0.03               | 1.2      | В                       | 0.97 | 0.085 | В          | 0.04  | 6800   | X     | 13.9   |
| 100-D-77 | J1K4D4      | 7/11/2011   | 151208.1 | 573251.7 | 0.028 | U     | 0.03               | 0.93     | В                       | 0.83 | 0.11  | В          | 0.035 | 5550   |       | 11.9   |
| 100-D-77 | J1K4D5      | 7/11/2011   | 151204.6 | 573266.2 | 0.037 | U     | 0.04               | 1.4      | В                       | 1.1  | 0.16  | В          | 0.046 | 9420   |       | 15.7   |
| 100-D-77 | J1K4D6      | 7/11/2011   | 151191.2 | 573260.1 | 0.029 | U     | 0.03               | 2.3      |                         | 0.85 | 0.52  |            | 0.036 | 21700  | X     | 12.2   |
| 100-D-77 | J1K4D7      | 7/11/2011   | 151187.5 | 573233.9 | 0.033 | U     | 0.03               | 0.98     | U                       | 0.98 | 0.07  | В          | 0.041 | 12300  | X     | 14.1   |
| 100-D-77 | J1K4D8      | 7/11/2011   | 151182.6 | 573251.6 | 0.03  | U     | 0.03               | 1.7      | В                       | 0.9  | 0.45  |            | 0.038 | 21300  | X     | 13     |
| 100-D-77 | J1K4D9      | 7/11/2011   | 151158.4 | 573257.6 | 0.029 | U     | 0.03               | 0.98     | В                       | 0.87 | 0.089 | В          | 0.036 | 8200   |       | 12.5   |
| 100-D-77 | J1K4F0      | 7/11/2011   | 151150.6 | 573254.9 | 0.03  | U     | 0.03               | 1.5      | В                       | 0.9  | 0.12  | В          | 0.038 | 7210   | X     | 12.9   |
| 100-D-77 | J1K4H7      | 7/6/2011    | 151223   | 573251   | 0.082 | В     | 0.03               | 0.98     | U                       | 0.98 | 0.041 | U          | 0.041 | 5950   | X     | 14.    |
| 100-D-77 | J1K4H8      | 7/6/2011    | 151223   | 573250   | 0.035 | U     | 0.04               | 1        | U                       | 1    | 0.044 | U          | 0.044 | 17800  | X     | 1:     |
| 100-D-77 | J1K4H9      | 7/6/2011    | 151222   | 573247   | 0.051 | В     | 0.04               | 1        | U                       | 1    | 0.078 | В          | 0.043 | 20900  | X     | 14.9   |
| 100-D-77 | J1N0H9      | 12/15/2011  | 151241   | 573250.8 |       |       |                    |          |                         |      |       |            |       |        |       | 9 44 3 |
| 100-D-77 | J1N0J0      | 12/15/2011  | 151234.4 | 573242.7 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | J1N0J1      | 12/15/2011  | 151225   | 573240.9 | 100   |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | J1N0J2      | 12/15/2011  | 151220   | 573235.7 |       |       |                    |          |                         |      |       |            |       |        |       | 12.00  |
| 100-D-77 | J1N0J3      | 12/15/2011  | 151212.7 | 573241.7 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | J1N0J4      | 12/15/2011  | 151180.1 | 573277.6 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | JIN0J5      | 12/15/2011  | 151184.4 | 573278.4 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | JIN0J6      | 12/15/2011  | 151186.1 | 573273.9 |       |       | SALVERY CONTROL OF |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | J1N0J7      | 12/15/2011  | 151190.1 | 573273.5 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | J1N0J8      | 12/15/2011  | 151196.9 | 573273.6 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | J1N0J9      | 12/19/2011  | 151207.8 | 573263.9 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | J1N0K0      | 12/19/2011  | 151214.4 | 573270.5 |       |       |                    |          |                         |      |       |            |       | 400    |       |        |
| 100-D-77 | J1N0K1      | 12/19/2011  | 151220.4 | 573267.2 | 1000  |       |                    |          |                         |      |       | 50.00      |       |        |       |        |
| 100-D-77 | J1N0K2      | 12/19/2011  | 151219.6 | 573260.9 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | J1N0K3      | 12/19/2011  | 151228.2 | 573265.3 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | JINIK4      | 1/3/2012    | 151222.4 | 573249.8 |       |       |                    |          |                         |      |       | 777        |       |        |       |        |
| 100-D-77 | JINIK5      | 1/3/2012    | 151224.8 | 573252.4 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | JINIK6      | 1/3/2012    | 151229.6 | 573252.9 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | JINIK7      | 1/3/2012    | 151227.7 | 573258.1 |       |       |                    |          |                         | 100  |       |            |       |        |       |        |
| 100-D-77 | JINIK8      | 1/3/2012    | 151221.6 | 573257.3 |       |       |                    |          |                         |      |       |            |       |        |       |        |
| 100-D-77 | J1N215      | 1/9/2012    | 151222.8 | 573248.9 | 0.15  | U     | 0.15               | 0.91     | U                       | 0.91 | 0.055 | В          | 0.038 | 6310   | X     | 1      |
| 100-D-77 | J1N216      | 1/9/2012    | 151221.8 | 573249   | 0.15  |       | 0.15               |          | Section Section 19 (19) | 0.9  | 0.08  |            | 0.038 |        | -     | 1      |
| 100-D-77 | J1N217      | 1/9/2012    | 151222.2 | 573249.6 | 0.17  |       | 0.17               | 1        | U                       | 1    | 0.042 |            | 0.042 | 5940   |       | 14.    |
| 100-D-77 | J1N218      | 1/9/2012    | 151224.4 | 573251.6 | 0.033 |       | 0.03               |          |                         | 0.92 | 0.078 |            | 0.038 | 5800   |       | 13.    |
| 100-D-77 | J1N219      | 1/9/2012    | 151228.4 | 573254.8 | 0.033 |       | 0.03               | 1000000  |                         | 0.99 | 0.084 |            | 0.042 | 5780   |       | 14.    |
| 100-D-77 | J1N220      | 1/9/2012    | 151225   | 573254.5 | 0.036 |       | 0.03               |          |                         | 0.88 | 0.075 |            | 0.037 | 5810   |       | 12.    |
| 100-D-77 | J1N221      | 1/9/2012    | 151223.8 | 573258   | 0.030 |       | 0.15               |          |                         | 0.9  | 0.066 |            | 0.037 |        |       | 12.    |
| 100-D-77 | J1N222      | 1/9/2012    | 151183.7 | 573252.3 | 0.15  |       | 0.15               |          |                         | 0.97 | 0.084 |            | 0.041 | 5660   |       | 1      |
| 100-D-77 | J1N223      | 1/9/2012    | 151185   | 573255.3 | 0.10  |       | 0.10               |          |                         | 0.95 |       | В          | 0.041 |        | -     | 13.    |
| 100-D-77 | J1N223      | 1/9/2012    | 151186.4 | 573257.6 | 0.032 |       | 0.03               |          |                         | 0.89 | 0.13  |            |       |        |       | 12.    |

|          |                  |             |          |          | CI     |          |      |       | a           |       | _     |          |                   | He    | xaval | ent   |
|----------|------------------|-------------|----------|----------|--------|----------|------|-------|-------------|-------|-------|----------|-------------------|-------|-------|-------|
| Location | HEIS Number      | Sample Date | Northing | Easting  |        | omit     |      | ļ.,   | Cobalt      |       |       | oppe     |                   |       | romi  |       |
| 100 D (0 | 7177015          | 1/25/2011   | 151154   | 577756   | mg/kg  | Q        | PQL  | mg/kg | Q           | PQL   | mg/kg | Q        | PQL               | mg/kg | Q     | PQL   |
| 100-D-62 | J1H217           | 4/25/2011   | 151154   | 573256   | 211    |          | 0.07 | 8.8   |             | 0.12  | 79.1  |          | 0.26              | 2.86  |       | 0.15  |
| 100-D-62 | J1H230           | 4/25/2011   | 151154   | 573256   | 540    | 20181912 | 0.15 | 8.3   | anso wake y | 0.26  | 102   | ecaretas | 0.55              | 0.154 |       | 0.15  |
| 100-D-62 | J1HNK6           | 5/11/2011   | 151156   | 573256   | (3)    |          |      |       |             |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-62 | J1HNK7           | 5/11/2011   | 151156   | 573256   |        |          |      |       |             |       |       |          |                   | 0.155 | U     | 0.15  |
| 100-D-77 | J1H213           | 4/25/2011   | 151222   | 573248   | 16.9   |          | 0.06 | 7.5   |             | 0.11  | 22.1  |          | 0.23              | 0.42  |       | 0.15  |
| 100-D-77 | J1H215           | 5/4/2011    | 151192   | 573258   | 13.8   |          | 0.06 | 9.900 | X           | 0.099 | 20.8  | X        | 0.21              | 1.65  |       | 0.15  |
| 100-D-77 | J1H216           | 4/25/2011   | 151185   | 573239   | 59.7   |          | 0.06 |       |             | 0.11  | 61.4  |          | 0.24              | 2.38  |       | 0.15  |
| 100-D-77 | J1J4W7           | 5/11/2011   |          |          | 61.9   | N        | 0.06 | 0.11  | U           | 0.11  | 4.2   |          | 0.24              | 7.7   |       | 0.15  |
| 100-D-77 | J1JW09           | 6/16/2011   | 151224.8 | 573251.1 |        |          |      |       |             |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | J1JW 10          | 6/16/2011   | 151223.3 | 573253.2 |        |          |      |       |             |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | J1K4D1           | 7/11/2011   | 151240.3 | 573255   | 7.2    |          | 0.05 | 6.9   | X           | 0.088 | 15.3  |          | 0.19              | 0.155 | U     | 0.15  |
| 100-D-77 | J1K4D2           | 7/11/2011   | 151223.9 | 573255.5 | 12.1   |          | 0.07 | 6.6   | X           | 0.12  | 17.6  | X        | 0.26              | 0.155 | U     | 0.15  |
| 100-D-77 | J1K4D3           | 7/11/2011   | 151222.8 | 573249.6 | 11.8   |          | 0.06 | 5.4   | X           | 0.099 | 42.4  | X        | 0.21              | 0.155 | U     | 0.15  |
| 100-D-77 | J1K4D4           | 7/11/2011   | 151208.1 | 573251.7 |        | X        | 0.05 | 6.5   | X           | 0.085 | 15.1  |          | 0,18              | 0.155 | U     | 0.15  |
| 100-D-77 | J1K4D5           | 7/11/2011   | 151204.6 | 573266.2 | 7.8    |          | 0.06 | 7     | X           | 0.11  | 17.7  |          | 0.24              | 0.155 | U     | 0.15  |
| 100-D-77 | J1K4D6           | 7/11/2011   | 151191.2 | 573260.1 | 41.3   | X        | 0.05 | 7.5   | X           | 0.087 | 23.7  | X        | 0.19              | 0.943 |       | 0.15  |
| 100-D-77 | J1K4D7           | 7/11/2011   | 151187.5 | 573233.9 | 9.4    | X        | 0.06 | 6.8   | X           | 0.1   | 17.4  | X        | 0.22              | 0.155 | U     | 0.15  |
| 100-D-77 | J1K4D8           | 7/11/2011   | 151182.6 | 573251.6 | 12.5   | X        | 0.05 | 6.9   | X           | 0.092 | 20.2  | X        | 0.2               | 0.811 |       | 0.15  |
| 100-D-77 | J1K4D9           | 7/11/2011   | 151158.4 | 573257.6 | 8.5    | X        | 0.05 | 7     | X           | 0.088 | 16.8  | X        | 0.19              | 0.155 | U     | 0.15  |
| 100-D-77 | J1K4F0           | 7/11/2011   | 151150.6 | 573254.9 | 10.5   | X        | 0.05 | 6.6   | X           | 0.092 | 16.6  | X        | 0.2               | 0.155 | U     | 0.15  |
| 100-D-77 | J1K4H7           | 7/6/2011    | 151223   | 573251   | 9.1    | X        | 0.06 | 6.8   | X           | 0.1   | 21.3  | X        | 0.22              | 0.432 |       | 0.15  |
| 100-D-77 | J1K4H8           | 7/6/2011    | 151223   | 573250   | 3.2    | X        | 0.06 | 1.4   | X           | 0.11  | 3.5   | X        | 0.23              | 0.652 |       | 0.15  |
| 100-D-77 | J1K4H9           | 7/6/2011    | 151222   | 573247   | 1.5    | X        | 0.06 | 3.3   | X           | 0.11  | 5.3   | X        | 0.23              | 0.155 | U     | 0.15  |
| 100-D-77 | J1N0H9           | 12/15/2011  | 151241   | 573250.8 | 100000 |          |      |       |             |       |       |          |                   | 0.155 | U     | 0.15  |
| 100-D-77 | J1N0J0           | 12/15/2011  | 151234.4 | 573242.7 |        |          |      |       |             |       |       |          |                   | 0.155 | U     | 0.15  |
| 100-D-77 | J1N0J1           | 12/15/2011  | 151225   | 573240.9 |        |          |      |       | No.         |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | J1N0J2           | 12/15/2011  | 151220   | 573235.7 |        |          |      |       | Win.        |       |       |          |                   | 0.155 |       | 0.15: |
| 100-D-77 | J1N0J3           | 12/15/2011  | 151212.7 | 573241.7 |        |          |      |       |             |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | J1N0J4           | 12/15/2011  | 151180.1 | 573277.6 |        |          |      |       | S/AVE       |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | J1N0J5           | 12/15/2011  | 151184.4 | 573278.4 |        |          |      |       | 977         |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | J1N0J6           | 12/15/2011  | 151186.1 | 573273.9 |        |          |      |       |             | -     |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | J1N0J7           | 12/15/2011  | 151190.1 | 573273.5 |        |          |      |       |             |       |       | 461      |                   | 0.155 |       | 0.15  |
| 100-D-77 | J1N0J8           | 12/15/2011  | 151196.9 | 573273.6 |        |          |      |       |             |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | J1N0J9           | 12/19/2011  | 151207.8 | 573263.9 |        |          |      |       |             |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | JINOKO           | 12/19/2011  | 151214.4 | 573270.5 |        |          |      |       | and the     |       |       |          |                   | 0.155 | U     | 0.15  |
| 100-D-77 | J1N0K1           | 12/19/2011  | 151220.4 | 573267.2 |        |          |      |       |             |       |       |          | V                 | 0.155 | -     | 0.15  |
| 100-D-77 | JINOK1           | 12/19/2011  | 151220.4 | 573260.9 |        |          |      |       |             |       |       |          | Biomicrosis since | 0.155 |       | 0.15  |
| 100-D-77 | JINOK2<br>JINOK3 | 12/19/2011  | 151219.0 | 573265.3 |        |          | -    |       |             |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | JINIK4           | 1/3/2012    | 151222.4 | 573249.8 |        |          |      |       |             |       |       | 1        |                   | 0.155 |       |       |
| 100-D-77 | JINIK4<br>JINIK5 |             |          |          |        |          | -    |       |             |       |       |          |                   |       | U     | 0.15  |
|          |                  | 1/3/2012    | 151224.8 | 573252.4 |        |          |      |       |             |       |       |          |                   | 0.219 | 7.7   | 0.15  |
| 100-D-77 | JINIK6           | 1/3/2012    | 151229.6 | 573252.9 |        |          |      |       |             |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | JINIK7           | 1/3/2012    | 151227.7 | 573258.1 |        |          |      |       |             |       |       |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | JINIK8           | 1/3/2012    | 151221.6 | 573257.3 |        |          | 0.00 |       |             |       | ~ -   |          |                   | 0.155 |       | 0.15  |
| 100-D-77 | J1N215           | 1/9/2012    | 151222.8 | 573248.9 | 4.3    |          | 0.05 | 6.5   | X           | 0.46  | 8.6   | X        | 0.2               | 0.155 |       | 0.15  |
| 100-D-77 | J1N216           | 1/9/2012    | 151221.8 | 573249   | 5.1    |          | 0.05 | 9.4   | X           | 0.46  | 13.8  | X        | 0.2               | 0.155 |       | 0.15  |
| 100-D-77 | J1N217           | 1/9/2012    | 151222.2 | 573249.6 | 3.9    |          | 0.06 | 6.8   | X           | 0.52  | 10.8  | X        | 0.22              | 0.155 |       | 0.15  |
| 100-D-77 | J1N218           | 1/9/2012    | 151224.4 | 573251.6 | 3.7    |          | 0.05 | 9     | X           | 0.094 | 13.7  | X        | 0.2               | 0.155 |       | 0.15  |
| 100-D-77 | J1N219           | 1/9/2012    | 151228.4 | 573254.8 | 4.7    |          | 0.06 |       | X           | 0.1   | 13.5  | X        | 0.22              | 0.155 |       | 0.15  |
| 100-D-77 | J1N220           | 1/9/2012    | 151225   | 573254.5 | 4.2    |          | 0.05 | 8.7   | X           | 0.09  | 14.4  | X        | 0.2               | 0.155 |       | 0.15  |
| 100-D-77 | J1N221           | 1/9/2012    | 151223.8 | 573258   | 3.8    |          | 0.05 | 11    | X           | 0.46  | 14.1  | X        | 0.2               | 0.155 |       | 0.15  |
| 100-D-77 | J1N222           | 1/9/2012    | 151183.7 | 573252.3 | 3.7    |          | 0.06 | 10.8  | X           | 0.5   | 12.6  |          | 0.22              | 0.155 | U     | 0.15  |
| 100-D-77 | J1N223           | 1/9/2012    | 151185   | 573255.3 | 5.3    |          | 0.06 |       | X           | 0.097 | 13.9  |          | 0.21              | 0.155 |       | 0.15  |
| 100-D-77 | J1N224           | 1/9/2012    | 151186.4 | 573257.6 | 7.2    | X        | 0.05 | 9.2   | X           | 0.09  | 13.7  | X        | 0.2               | 0.155 | U     | 0.15  |

| Location | HEIS Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Date | Northing                        | Easting  |       | ron |     |       | Lead |      | Mag   | nesi      |      |              | ngan            |       |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------|----------|-------|-----|-----|-------|------|------|-------|-----------|------|--------------|-----------------|-------|
| Location | HEAS NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Date | Northing                        | rasung   | mg/kg | Q   | PQL | mg/kg | Q    | PQL  | mg/kg | Q         | PQL  | mg/kg        | Q               | PQL   |
| 100-D-62 | J1H217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/25/2011   | 151154                          | 573256   | 22900 |     | 4.6 | 97.1  |      | 0.33 | 4710  |           | 4.5  | 343          |                 | 0.12  |
| 100-D-62 | J1H230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/25/2011   | 151154                          | 573256   | 20300 | M   | 9.7 | 114   |      | 0.69 | 3970  | non-count | 9.4  | 272          |                 | 0.26  |
| 100-D-62 | J1HNK6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/11/2011   | 151156                          | 573256   |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-62 | J1HNK7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/11/2011   | 151156                          | 573256   |       |     |     |       |      |      |       |           | 33.0 |              |                 |       |
| 100-D-77 | J1H213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/25/2011   | 151222                          | 573248   | 25700 |     | 4   | 7.1   |      | 0.29 | 3970  |           | 3.9  | 260          |                 | 0.11  |
| 100-D-77 | J1H215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/4/2011    | 151192                          | 573258   | 21200 | X   | 3.8 | 32.5  | X    | 0.27 | 4220  | X         | 3.7  | 315          | X               | 0.099 |
| 100-D-77 | J1H216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/25/2011   | 151185                          | 573239   | 22700 |     | 4.1 | 12200 |      | 0.29 | 2430  |           | 4    | 250          |                 | 0.1   |
| 100-D-77 | J1J4W7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/11/2011   |                                 |          | 4960  |     | 4.1 | 177   |      | 0.29 | 58.7  |           | 4    | 6.4          | M               | 0.1   |
| 100-D-77 | J1JW09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/16/2011   | 151224.8                        | 573251.1 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1JW 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/16/2011   | 151223.3                        | 573253.2 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1K4D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151240.3                        | 573255   | 20200 | X   | 3.3 | 3.3   |      | 0.24 | 3830  | X         | 3.3  | 297          | X               | 0.08  |
| 100-D-77 | J1K4D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151223.9                        | 573255.5 | 19500 | X   | 4.6 | 7.3   |      | 0.32 | 4460  | X         | 4.5  | 284          | X               | 0.13  |
| 100-D-77 | J1K4D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151222.8                        | 573249.6 | 16000 | X   | 3.8 | 6.7   |      | 0.27 | 3790  | X         | 3.7  | 244          | X               | 0.09  |
| 100-D-77 | J1K4D4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151208.1                        | 573251.7 | 19600 | X   | 3.2 | 5.2   |      | 0.23 | 4150  | X         | 3.1  | 275          | X               | 0.08  |
| 100-D-77 | J1K4D5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151204.6                        | 573266.2 | 22400 | _   | 4.2 | 15    |      | 0.3  | 4210  | X         | 4.1  | 287          | X               | 0.1   |
| 100-D-77 | J1K4D6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151191.2                        | 573260.1 | 23600 | X   | 3.3 | 89.7  |      | 0.23 | 4610  | X         | 3.2  | 324          | _               | 0.08  |
| 100-D-77 | J1K4D7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151187.5                        | 573233.9 | 19400 | -   | 3.8 | 2.8   |      | 0.27 | 4190  | X         | 3.7  | 264          | _               | 0.    |
| 100-D-77 | J1K4D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151182.6                        | 573251.6 | 21500 |     | 3.5 | 21.5  |      | 0.25 | 3980  | X         | 3.4  | 263          |                 | 0.09  |
| 100-D-77 | J1K4D9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151158.4                        | 573257.6 | 20400 |     | 3.4 | 7.5   |      | 0.24 | 4360  | X         | 3.3  | 295          | X               | 0.08  |
| 100-D-77 | J1K4F0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151150.6                        | 573254.9 | 18800 |     | 3.5 | 5.5   |      | 0.25 | 4090  | X         | 3.4  | 278          | X               | 0.09  |
| 100-D-77 | J1K4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/6/2011    | 151223                          | 573251   | 27700 |     | 3.8 | 2.6   |      | 0.27 | 2730  | X         | 3.7  |              |                 | 0.    |
| 100-D-77 | J1K4H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/6/2011    | 151223                          | 573250   | 24300 | -   | 4   | 3     |      | 0.29 | 415   |           | 3.9  |              |                 | 0.1   |
| 100-D-77 | J1K4H9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/6/2011    | 151222                          | 573247   | 6940  |     | 4   | 4.3   |      | 0.28 | 1520  |           | 3.9  |              |                 | 0.1   |
| 100-D-77 | J1N0H9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151241                          | 573250.8 | 0710  |     |     | 1.5   |      | 0.20 |       | 1000      |      |              |                 |       |
| 100-D-77 | J1N0J0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151234.4                        | 573242.7 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N0J1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151225                          | 573240.9 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N0J1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151223                          | 573235.7 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N0J2<br>J1N0J3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12/15/2011  | 151212.7                        | 573241.7 |       |     |     |       |      |      |       |           |      |              |                 |       |
|          | The state of the s |             | 151180.1                        | 573277.6 |       |     | -   |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N0J4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | The second second second second | 573278.4 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N0J5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151184.4                        |          |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N0J6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151186.1                        | 573273.9 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N0J7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151190.1                        | 573273.5 |       |     |     |       |      |      | -     |           |      |              |                 |       |
| 100-D-77 | J1N0J8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151196.9                        | 573273.6 |       |     |     |       |      |      | -     |           |      | and a second |                 |       |
| 100-D-77 | J1N0J9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/19/2011  | 151207.8                        | 573263.9 |       |     |     |       |      |      |       | 0.60      | -    |              | -               |       |
| 100-D-77 | J1N0K0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/19/2011  | 151214.4                        | 573270.5 |       |     |     | -     |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N0K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/19/2011  | 151220.4                        | 573267.2 | _     |     |     |       |      |      | -     |           |      | -            |                 |       |
| 100-D-77 | J1N0K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/19/2011  | 151219.6                        | 573260.9 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N0K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/19/2011  | 151228.2                        | 573265.3 |       | -   |     |       |      | 68   |       |           |      | -            | industria y con |       |
| 100-D-77 | JINIK4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/3/2012    | 151222.4                        | 573249.8 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N1K5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/3/2012    | 151224.8                        | 573252.4 |       |     |     |       |      |      |       |           |      |              | autom or        |       |
| 100-D-77 | J1N1K6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/3/2012    | 151229.6                        | 573252.9 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | JINIK7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/3/2012    | 151227.7                        | 573258.1 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N1K8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/3/2012    | 151221.6                        | 573257.3 |       |     |     |       |      |      |       |           |      |              |                 |       |
| 100-D-77 | J1N215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151222.8                        | 573248.9 | 32500 | -   | 3.5 |       |      | 1.2  |       |           | 3.4  | 1            | X               | 0.09  |
| 100-D-77 | J1N216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151221.8                        | 573249   | 28600 |     | 3.5 |       |      | 1.2  |       |           | 3.4  | -            | X               | 0.09  |
| 100-D-77 | J1N217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151222.2                        | 573249.6 | 28900 |     | 3.9 |       |      | 1.4  |       |           | 3.8  |              | X               | 0     |
| 100-D-77 | J1N218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151224.4                        | 573251.6 | 21900 |     | 3.6 |       |      | 0.25 |       |           | 3.5  |              | X               | 0.09  |
| 100-D-77 | J1N219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151228.4                        | 573254.8 | 23600 |     | 3.9 | 1     |      | 0.27 | -     |           | 3.7  | 1            | X               | 0     |
| 100-D-77 | J1N220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151225                          | 573254.5 | 21500 | X   | 3.4 |       |      | 0.24 |       |           | 3.3  |              | X               | 0.0   |
| 100-D-77 | J1N221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151223.8                        | 573258   | 23300 | X   | 3.5 | 3     |      | 1.2  | 4230  | X         | 3.4  | 287          | X               | 0.09  |
| 100-D-77 | J1N222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151183.7                        | 573252.3 | 24600 | X   | 3.8 | 2.9   | )    | 1.3  | 4040  | X         | 3.7  | 288          | X               | 0.09  |
| 100-D-77 | J1N223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151185                          | 573255.3 | 24200 | X   | 3.7 | 4.8   | 3    | 0.26 | 4280  | X         | 3.6  | 282          | X               | 0.09  |
| 100-D-77 | J1N224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151186.4                        | 573257.6 | 23800 | X   | 3.4 | 7.9   | )    | 0.24 | 4250  | X         | 3.3  | 292          | X               | 0.0   |

|                      |                    | 2. 100-D-62, 1 |          |          |               | ercui |             |                      |       |      |           |        |             |               | tac- '   |           |
|----------------------|--------------------|----------------|----------|----------|---------------|-------|-------------|----------------------|-------|------|-----------|--------|-------------|---------------|----------|-----------|
| Location             | HEIS Number        | Sample Date    | Northing | Easting  |               | _     | ·           | -                    | ybden | -    |           | icke   |             |               | tassi    |           |
| 100-D-62             | J1H217             | 4/25/2011      | 151154   | 573256   | mg/kg<br>23.9 | _     | PQL<br>0.61 | mg/kg                | Q     | PQL  | mg/kg     | Q      | PQL<br>0.15 | mg/kg<br>1620 | Q        | PQL       |
| 100-D-62             | J1H230             | 4/25/2011      | 151154   | 573256   | 14.3          |       | 0.01        |                      | В     | 0.32 | 16.4      | -      |             |               |          | 49.<br>10 |
| 100-D-62             | J1HNK6             | 5/11/2011      | 151154   | 573256   | 14.3          | M     | 0.15        | 4.8                  | В     | 0.66 | 10        | 258562 | 0.31        | 1490          | UNISALAY | 10        |
| 100-D-62             | J1HNK7             | 5/11/2011      | 151156   | 573256   |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-62<br>100-D-77 |                    |                |          |          | 0.053         |       | 0.01        | 0.05                 |       | 0.05 |           | 20,000 | 0.10        | 0.40          |          |           |
| 100-D-77             | J1H213<br>J1H215   | 4/25/2011      | 151222   | 573248   | 0.052         |       | 0.01        | 0.27                 | U     | 0.27 | 9.7       |        | 0.13        | 949           |          | 43.       |
| 100-D-77             |                    | 5/4/2011       | 151192   | 573258   | 2.6           |       | 0.06        | 0.82                 | BM    | 0.26 | 10.6      | X      | 0.12        | 979           |          | 40.       |
| 100-D-77             | J1H216             | 4/25/2011      | 151185   | 573239   | 2             |       | 0.06        | 3.9                  |       | 0.28 | 16.5      | _      | 0.13        | 647           | _        | 44.       |
| 100-D-77             | J1J4W7             | 5/11/2011      | 161224.0 | 672261.1 | 211           | M     | 7           | 1.8                  | В     | 0.28 | 0.89      | В      | 0.13        | 81.6          | В        | 44.       |
|                      | J1JW 09<br>J1JW 10 | 6/16/2011      | 151224.8 | 573251.1 |               |       | ļ           |                      |       |      |           |        |             |               |          |           |
| 100-D-77             |                    | 6/16/2011      | 151223.3 | 573253.2 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | J1K4D1             | 7/11/2011      | 151240.3 | 573255   | 0.14          |       | 0.01        | 0.62                 | В     | 0.23 | 8.6       |        | 0.11        | 733           |          | 36.       |
| 100-D-77             | J1K4D2             | 7/11/2011      | 151223.9 | 573255.5 | 0.19          |       | 0.01        | 0.31                 | U     | 0.31 | 10.2      |        | 0.15        | 1110          |          | 49        |
| 100-D-77             | J1K4D3             | 7/11/2011      | 151222.8 | 573249.6 | 0.78          |       | 0.01        | 0.26                 | U     | 0.26 | 10.4      | -      | 0.12        | 970           |          | 40.       |
| 100-D-77             | J1K4D4             | 7/11/2011      | 151208.1 | 573251.7 | 0.09          |       | 0.01        | 0.22                 | U     | 0.22 | 10.9      | X      | 0.1         | 905           |          | 34.       |
| 100-D-77             | J1K4D5             | 7/11/2011      | 151204.6 | 573266.2 | 0.14          |       | 0.01        | 0.29                 | U     | 0.29 | 8.9       |        | 0.14        | 934           |          | 45.       |
| 100-D-77             | J1K4D6             | 7/11/2011      | 151191.2 | 573260.1 | 7.2           |       | 0.11        | 0.43                 | В     | 0.23 | 12.5      | X      | 0.11        | 1030          |          | 35        |
| 100-D-77             | J1K4D7             | 7/11/2011      | 151187.5 | 573233.9 | 0.0088        | В     | 0.01        | 0.26                 | U     | 0.26 | 10.3      | X      | 0.12        | 883           |          | 40.       |
| 100-D-77             | J1K4D8             | 7/11/2011      | 151182.6 | 573251.6 | 0.48          |       | 0.01        | 0.37                 | В     | 0.24 | 10.8      | X      | 0.11        | 767           |          | 37.       |
| 100-D-77             | J1K4D9             | 7/11/2011      | 151158.4 | 573257.6 | 0.028         |       | 0.01        | 0.23                 | U     | 0.23 | 10.1      | X      | 0.11        | 989           |          | 36.       |
| 100-D-77             | J1K4F0             | 7/11/2011      | 151150.6 | 573254.9 | 0.15          |       | 0.01        | 0.24                 | U     | 0.24 | 9.9       | X      | 0.11        | 1070          |          | 37.       |
| 100-D-77             | J1K4H7             | 7/6/2011       | 151223   | 573251   | 0.012         | BN    | 0.01        | 0.36                 | В     | 0.26 | 5.6       |        | 0.12        | 760           |          | 41.       |
| 100-D-77             | J1K4H8             | 7/6/2011       | 151223   | 573250   | 0.68          |       | 0.01        | 0.28                 | U     | 0.28 | 0.63      | В      | 0.13        | 1550          |          | 43.       |
| 100-D-77             | J1K4H9             | 7/6/2011       | 151222   | 573247   | 43.3          |       | 0.58        | 0.27                 | U     | 0.27 | 2.4       | В      | 0.13        | 437           |          | 43.:      |
| 100-D-77             | J1N0H9             | 12/15/2011     | 151241   | 573250.8 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | J1N0J0             | 12/15/2011     | 151234.4 | 573242.7 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | J1N0J1             | 12/15/2011     | 151225   | 573240.9 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | J1N0J2             | 12/15/2011     | 151220   | 573235.7 |               | 1000  |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | J1N0J3             | 12/15/2011     | 151212.7 | 573241.7 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | J1N0J4             | 12/15/2011     | 151180.1 | 573277.6 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | J1N0J5             | 12/15/2011     | 151184.4 | 573278.4 |               |       |             | 1000                 |       |      |           |        |             |               |          |           |
| 100-D-77             | J1N0J6             | 12/15/2011     | 151186.1 | 573273.9 |               |       |             |                      |       |      |           |        | 2.7         |               |          |           |
| 100-D-77             | J1N0J7             | 12/15/2011     | 151190.1 | 573273.5 |               |       |             |                      |       |      |           | \$10   |             |               |          |           |
| 100-D-77             | J1N0J8             | 12/15/2011     | 151196.9 | 573273.6 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | J1N0J9             | 12/19/2011     | 151207.8 | 573263.9 |               |       |             |                      |       |      | 8 1 1 1 1 |        |             |               |          |           |
| 100-D-77             | J1N0K0             | 12/19/2011     | 151214.4 | 573270.5 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | J1N0K1             | 12/19/2011     | 151220.4 | 573267.2 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | J1N0K2             | 12/19/2011     | 151219.6 | 573260.9 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | J1N0K3             | 12/19/2011     | 151228.2 | 573265.3 |               |       |             |                      |       |      |           |        |             |               | - 3      |           |
| 100-D-77             | JINIK4             | 1/3/2012       | 151222.4 | 573249.8 |               |       |             |                      |       |      |           |        |             |               | -        |           |
| 100-D-77             | JINIK5             | 1/3/2012       | 151224.8 | 573252.4 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | JINIK6             | 1/3/2012       | 151229.6 | 573252.9 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | JINIK7             | 1/3/2012       | 151227.7 | 573258.1 |               |       |             |                      |       |      |           |        |             |               |          |           |
| 100-D-77             | JINIK8             | 1/3/2012       | 151221.6 | 573257.3 |               |       |             |                      |       | -3   |           |        |             |               |          |           |
| 100-D-77             | J1N215             | 1/9/2012       | 151222.8 | 573248.9 | 0.0069        | 11    | 0.01        | 0.34                 | В     | 0.24 | 4.4       | X      | 0.11        | 746           |          | 37.0      |
| 100-D-77             | J1N216             | 1/9/2012       | 151221.8 | 573248.9 | 0.0009        | U     |             | and the state of the |       | 0.24 | 4.4       |        | 0.11        | 745           |          | 37.       |
| 100-D-77             | J1N217             |                |          |          |               |       | 0.01        | 0.24                 | U     | 0.24 | 6.9       |        | 0.11        | 504           | -        | 37.1      |
|                      | 1                  | 1/9/2012       | 151222.2 | 573249.6 | 0.0059        | U     | 0.01        | 0.27                 | U     | 0.27 | 4.9       | X      | 0.13        | 599           |          | 42.3      |
| 100-D-77             | J1N218             | 1/9/2012       | 151224.4 | 573251.6 | 0.0052        |       | 0.01        | 0.24                 | U     | 0.24 | 8.2       | X      | 0.12        | 403           |          | 38.5      |
| 100-D-77             | J1N219             | 1/9/2012       | 151228.4 | 573254.8 | 0.0053        |       | 0.01        | 0.26                 | U     | 0.26 | 8.7       | X      | 0.12        | 448           |          | 41.:      |
| 100-D-77             | J1N220             | 1/9/2012       | 151225   | 573254.5 | 0.0056        |       | 0.01        | 0.23                 | U     | 0.23 | 10.3      | X      | 0.11        | 447           |          | 36.9      |
| 100-D-77             | J1N221             | 1/9/2012       | 151223.8 | 573258   | 0.005         |       | 0.01        | 0.27                 | В     | 0.24 | 10.7      |        | 0.11        | 420           |          | 37.       |
| 100-D-77             | J1N222             | 1/9/2012       | 151183.7 | 573252.3 | 0.0056        | U     | 0.01        | 0.26                 | U     | 0.26 | 7.9       | X      | 0.12        | 476           |          | 40.7      |
| 100-D-77             | J1N223             | 1/9/2012       | 151185   | 573255.3 | 0.11          |       | 0.01        | 0.25                 | U     | 0.25 | 8.8       |        | 0.12        | 601           |          | 39.6      |
| 100-D-77             | J1N224             | 1/9/2012       | 151186.4 | 573257.6 | 0.17          |       | 0.01        | 0.23                 | U     | 0.23 | 9.5       | X      | 0.11        | 630           |          | 37.1      |

|                      | AMERICA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c . D .     | N. 48.   | To a stance | Sel   | eniu | m       | 5     | Silicon      |      | S      | ilver |        | 3       | odiu    | n     |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-------------|-------|------|---------|-------|--------------|------|--------|-------|--------|---------|---------|-------|
| Location             | HEIS Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Date | Northing | Easting     | mg/kg | Q    | PQL     | mg/kg | Q            | PQL  | mg/kg  | Q     | PQL    | mg/kg   | Q       | PQL   |
| 100-D-62             | J1H217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/25/2011   | 151154   | 573256      | 1     | U    | 1       | 293   |              | 6.9  | 3.2    |       | 0.19   | 600     |         | 71.8  |
| 100-D-62             | J1H230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/25/2011   | 151154   | 573256      | 2.2   | U    | 2.2     | 873   | MN           | 14.4 | 4.4    | N     | 0.41   | 1440    |         | 151   |
| 100-D-62             | J1HNK6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/11/2011   | 151156   | 573256      |       |      |         | 1000  |              |      |        |       |        |         |         |       |
| 100-D-62             | JIHNK7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/11/2011   | 151156   | 573256      |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | J1H213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/25/2011   | 151222   | 573248      | 0.91  | U    | 0.91    | 288   |              | 6    | 0.17   | U     | 0.17   | 308     |         | 62.3  |
| 100-D-77             | J1H215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/4/2011    | 151192   | 573258      | 1.3   |      | 0.85    | 178   | N            | 5.6  | 0.16   | U     | 0.16   | 589     |         | 58.2  |
| 100-D-77             | J1H216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/25/2011   | 151185   | 573239      | 0.94  | U    | 0.94    | 229   |              | 6.2  | 1.2    |       | 0.17   | 198     |         | 64.3  |
| 100-D-77             | J1J4W7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/11/2011   |          |             | 0.94  | U    | 0.94    | 228   | N            | 6.2  | 0.32   |       | 0.17   | 98      | В       | 64.4  |
| 100-D-77             | J1JW09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/16/2011   | 151224.8 | 573251.1    |       |      |         |       |              |      |        |       | 8.60 g |         |         |       |
| 100-D-77             | J1JW 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/16/2011   | 151223.3 | 573253.2    |       |      |         |       |              |      |        |       | 8. 9   |         |         |       |
| 100-D-77             | J1K4D1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151240.3 | 573255      | 1     |      | 0.76    | 307   | XN           | 5    | 0.14   | U     | 0.14   | 275     |         | 51.9  |
| 100-D-77             | J1K4D2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151223.9 | 573255.5    | 1     | U    | 1       | 471   | X            | 6.8  | 0.19   | U     | 0.19   | 336     |         | 71    |
| 100-D-77             | J1K4D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151222.8 | 573249.6    | 0.85  | U    | 0.85    | 409   | X            | 5.6  | 0.16   | U     | 0.16   |         |         | 58.3  |
| 100-D-77             | J1K4D4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151208.1 | 573251.7    | 0.73  | U    | 0.73    | 376   | -            | 4.8  | 0.14   | U     | 0.14   |         |         | 50    |
| 100-D-77             | J1K4D5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151204.6 | 573266.2    | 0.96  | U    | 0.96    | 419   |              | 6.3  | 0.18   | U     | 0.18   |         |         | 65.6  |
| 100-D-77             | J1K4D6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151191.2 | 573260.1    | 0.75  | U    | 0.75    | 335   |              | 4.9  | 0.14   | U     | 0.14   |         |         | 51.2  |
| 100-D-77             | J1K4D7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151197.5 | 573233.9    | 0.86  | U    | 0.86    | 359   |              | 5.6  | 0.16   | -     | 0.16   |         |         | 58.8  |
| 100-D-77             | the state of the s | 7/11/2011   | 151187.5 | 573251.6    | 0.79  | Ü    | 0.79    | 186   |              | 5.2  | 0.15   |       | 0.15   |         |         | 54.2  |
| 100-D-77             | J1K4D8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 151158.4 | 573257.6    | 0.76  | U    | 0.76    | 330   |              | 5    | 0.13   |       | 0.14   |         |         | 52.1  |
| H. (1975)            | J1K4D9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   |          | 573254.9    | 0.70  | U    | 0.79    | 353   |              | 5.2  | 0.15   | -     | 0.15   |         |         | 54.1  |
| 100-D-77             | J1K4F0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/11/2011   | 151150.6 |             | 1     |      |         |       |              | 5.7  | 0.15   |       | 0.15   |         |         | 59.1  |
| 100-D-77             | J1K4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/6/2011    | 151223   | 573251      | 0.86  | U    | 0.86    | 127   |              |      | 0.10   |       | 0.10   |         |         | 62.8  |
| 100-D-77             | J1K4H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/6/2011    | 151223   | 573250      | 0.92  | U    | 0.92    | 199   |              | 6    |        |       |        |         |         | 62.2  |
| 100-D-77             | J1K4H9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/6/2011    | 151222   | 573247      | 0.91  | U    | 0.91    | 178   | 907305027965 | 6    | 0.17   | U     | 0.17   | 427     | 8901110 | 02.2  |
| 100-D-77             | J1N0H9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151241   | 573250.8    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | J1N0J0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151234.4 | 573242.7    |       |      | _       |       |              |      |        |       |        |         |         |       |
| 100-D-77             | J1N0J1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151225   | 573240.9    |       |      |         |       |              |      |        |       |        |         | 22 S    |       |
| 100-D-77             | J1N0J2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151220   | 573235.7    |       |      |         |       |              |      |        |       |        |         | 100     | 24.56 |
| 100-D-77             | J1N0J3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151212.7 | 573241.7    |       |      |         |       |              |      |        |       |        |         | ~,,     | ř     |
| 100-D-77             | J1N0J4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151180.1 | 573277.6    |       |      |         |       |              |      |        |       |        |         |         | 1     |
| 100-D-77             | J1N0J5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151184.4 | 573278.4    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | J1N0J6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151186.1 | 573273.9    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | J1N0J7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151190.1 | 573273.5    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | J1N0J8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/15/2011  | 151196.9 | 573273.6    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | J1N0J9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/19/2011  | 151207.8 | 573263.9    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | J1N0K0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/19/2011  | 151214.4 | 573270.5    |       |      |         |       |              |      | -      |       |        |         |         |       |
| 100-D-77             | J1N0K1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/19/2011  | 151220.4 | 573267.2    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | J1N0K2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/19/2011  | 151219.6 | 573260.9    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | J1N0K3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/19/2011  | 151228.2 | 573265.3    |       |      |         |       |              |      | 100    |       |        |         |         |       |
| 100-D-77             | J1N1K4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/3/2012    | 151222.4 | 573249.8    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | JIN1K5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/3/2012    | 151224.8 | 573252.4    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | JIN1K6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/3/2012    | 151229.6 | 573252.9    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | JINIK7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/3/2012    | 151227.7 | 573258.1    |       |      |         |       |              |      |        |       |        |         |         |       |
| 100-D-77             | JINIK8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/3/2012    | 151221.6 | 573257.3    |       |      | <b></b> |       |              |      |        |       |        |         |         |       |
| 100-D-77             | J1N215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151222.8 | 573248.9    | 0.79  | II   | 0.79    | 107   | ,            | 5.2  | 0.15   | UN    | 0.15   | 1720    |         | 54.   |
| 100-D-77             | J1N216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151221.8 | 573249      | 0.79  |      | 0.79    |       |              | 5.2  |        | UN    |        | 1       |         | 54.   |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/9/2012    | 151222.2 | 573249.6    | 0.89  |      | 0.89    |       |              | 5.8  |        | UN    |        |         |         | 60.   |
| 100-D-77<br>100-D-77 | J1N217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |          | 573251.6    | 0.89  | 10.5 | 0.81    |       |              | 5.3  |        | UN    |        |         |         | 55.   |
|                      | J1N218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151224.4 |             | 0.81  |      | 0.81    |       |              | 5.7  | 000.00 | UN    |        | 1000000 |         | 59.   |
| 100-D-77             | J1N219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151228.4 | 573254.8    |       |      |         |       |              |      |        | UN    |        |         |         | 53.   |
| 100-D-77             | J1N220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151225   | 573254.5    | 0.77  |      | 0.77    |       |              | 5.1  |        |       |        |         |         |       |
| 100-D-77             | J1N221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151223.8 | 573258      | 0.79  |      | 0.79    |       |              | 5.2  |        | UN    |        |         |         | 54.   |
| 100-D-77             | J1N222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151183.7 | 573252.3    | 0.85  |      | 0.85    |       |              | 5.6  |        | UN    |        |         |         | 58.   |
| 100-D-77             | J1N223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151185   | 573255.3    | 0.83  |      | 0.83    |       |              | 5.5  |        | UN    |        | 3000000 |         | 5     |
| 100-D-77             | J1N224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/9/2012    | 151186.4 | 573257.6    | 0.78  | U    | 0.78    | 227   | N            | 5.1  | 0.14   | UN    | 0.14   | 350     | )       | 53    |

|                   | T           | In-Proce    | ess Samples | - Metals. (7 |       |       |          |       | 77.         |             |
|-------------------|-------------|-------------|-------------|--------------|-------|-------|----------|-------|-------------|-------------|
| Location          | HEIS Number | Sample Date | Northing    | Easting      |       | nadiu |          | - /1  | Zinc        | DOL         |
| 100-D-62          | J1H217      | 4/25/2011   | 151154      | 572256       | mg/kg | Q     | PQL      | mg/kg | Q           | PQL         |
| 100-D-62          | -           |             |             | 573256       | 49.3  |       | 0.11     | 1400  |             | 0.43        |
|                   | J1H230      | 4/25/2011   | 151154      | 573256       | 44.4  |       | 0.24     | 1710  |             |             |
| 100-D-62          | J1HNK6      | 5/11/2011   | 151156      | 573256       | 40.00 |       |          |       |             |             |
| 100-D-62          | JIHNK7      | 5/11/2011   | 151156      | 573256       |       |       |          |       |             |             |
| 100-D-77          | J1H213      | 4/25/2011   | 151222      | 573248       | 64.3  |       | 0.1      | 47    | X           | 0.42        |
| 100-D-77          | J1H215      | 5/4/2011    | 151192      | 573258       | 53.7  |       | 0.09     |       | XMN         | 0.39        |
| 100-D-77          | J1H216      | 4/25/2011   | 151185      | 573239       | 73.2  |       | 0.1      | 291   | _X          | 0.4.        |
| 100-D-77          | J1J4W7      | 5/11/2011   |             |              | 46.6  |       | 0.1      | 29.8  |             | 0.43        |
| 100-D-77          | J1JW 09     | 6/16/2011   | 151224.8    | 573251.1     |       |       |          | 100   |             |             |
| 100-D-77          | J1JW 10     | 6/16/2011   | 151223.3    | 573253.2     |       |       |          |       |             | 4 كنسة سف   |
| 100-D-77          | J1K4D1      | 7/11/2011   | 151240.3    | 573255       | 48.8  | X     | 0.08     | 36.4  | X           | 0.33        |
| 100-D-77          | J1K4D2      | 7/11/2011   | 151223.9    | 573255.5     | 47.5  | X     | 0.11     | 43.4  | X           | 0.48        |
| 100-D-77          | J1K4D3      | 7/11/2011   | 151222.8    | 573249.6     | 39.6  | X     | 0.09     | 38.3  | X           | 0.39        |
| 100-D-77          | J1K4D4      | 7/11/2011   | 151208.1    | 573251.7     | 49    | X     | 0.08     | 38    | X           | 0.34        |
| 100-D-77          | J1K4D5      | 7/11/2011   | 151204.6    | 573266.2     | 54.3  | X     | 0.1      | 71.2  | X           | 0.44        |
| 100-D-77          | J1K4D6      | 7/11/2011   | 151191.2    | 573260.1     | 57.9  | X     | 0.08     | 256   | X           | 0.35        |
| 100-D-77          | J1K4D7      | 7/11/2011   | 151187.5    | 573233.9     | 43.6  | X     | 0.09     | 35.8  | X           | 0.4         |
| 100-D-77          | J1K4D8      | 7/11/2011   | 151182.6    | 573251.6     | 56.2  | X     | 0.09     | 86.8  | X           | 0.37        |
| 100-D-77          | J1K4D9      | 7/11/2011   | 151158.4    | 573257.6     | 47.4  | X     | 0.08     | 41.5  | X           | 0.33        |
| 100-D-77          | J1K4F0      | 7/11/2011   | 151150.6    | 573254.9     | 47.1  | X     | 0.09     | 48.8  | X           | 0.36        |
| 100-D-77          | J1K4H7      | 7/6/2011    | 151223      | 573251       | 67.5  | X     | 0.09     | 38.6  | X           | 0.4         |
| 100-D-77          | J1K4H8      | 7/6/2011    | 151223      | 573250       | 31.6  | X     | 0.1      | 5.2   | X           | 0.42        |
| 100-D-77          | J1K4H9      | 7/6/2011    | 151222      | 573247       | 18.2  | X     | 0.1      | 16.1  | X           | 0.42        |
| 100-D-77          | J1N0H9      | 12/15/2011  | 151241      | 573250.8     |       |       |          | 10.1  | EXCLUS      | 0.12        |
| 100-D-77          | JINOJO      | 12/15/2011  | 151234.4    | 573242.7     |       |       |          |       |             |             |
| 100-D-77          | JIN0JI      | 12/15/2011  | 151225      | 573240.9     |       |       |          |       |             |             |
| 100-D-77          | J1N0J2      | 12/15/2011  | 151220      | 573235.7     |       |       |          |       |             |             |
| 100-D-77          | J1N0J3      | 12/15/2011  | 151212.7    | 573241.7     |       |       |          |       |             | × ×         |
| 100-D-77          | J1N0J4      | 12/15/2011  | 151180.1    | 573277.6     |       |       | <u> </u> |       |             |             |
| 100-D-77          | J1N0J5      | 12/15/2011  | 151184.4    | 573278.4     |       |       |          |       |             |             |
| 100-D-77          | J1N0J6      | 12/15/2011  | 151186.1    | 573273.9     |       |       | 15550    |       |             |             |
| 100-D-77          | J1N0J7      | 12/15/2011  | 151190.1    |              |       |       |          |       |             |             |
| 100-D-77          |             |             |             | 573273.5     |       |       |          |       |             |             |
| 100-D-77          | J1N0J8      | 12/15/2011  | 151196.9    | 573273.6     |       |       |          |       |             |             |
|                   | J1N0J9      | 12/19/2011  | 151207.8    | 573263.9     |       |       |          |       |             |             |
| 100-D-77          | J1N0K0      | 12/19/2011  | 151214.4    | 573270.5     |       |       |          |       |             |             |
| 100-D-77          | J1N0K1      | 12/19/2011  | 151220.4    | 573267.2     |       |       |          |       |             |             |
| 100-D-77          | J1N0K2      | 12/19/2011  | 151219.6    | 573260.9     |       |       |          |       | <del></del> |             |
| 100-D-77          | J1N0K3      | 12/19/2011  | 151228.2    | 573265.3     |       | -     |          |       |             | *********** |
| 100-D-77          | JIN1K4      | 1/3/2012    | 151222.4    | 573249.8     |       | 2     |          |       |             |             |
| 100-D-77          | JIN1K5      | 1/3/2012    | 151224.8    | 573252.4     |       |       |          |       |             | <u> </u>    |
| 100-D-77          | JIN1K6      | 1/3/2012    | 151229.6    | 573252.9     |       |       |          |       |             |             |
| 100-D-77          | JIN1K7      | 1/3/2012    | 151227.7    | 573258.1     |       |       |          |       |             |             |
| 100-D-77          | JIN1K8      | 1/3/2012    | 151221.6    | 573257.3     |       |       |          |       |             |             |
| 100-D-77          | J1N215      | 1/9/2012    | 151222.8    | 573248.9     | 88.3  | X     | 0.43     | 32.3  | X           | 0.37        |
| 100-D-77          | J1N216      | 1/9/2012    | 151221.8    | 573249       | 106   | X     | 0.43     | 42.6  | X           | 0.37        |
| 100 <b>-</b> D-77 | J1N217      | 1/9/2012    | 151222.2    | 573249.6     | 91.7  | X     | 0.49     | 32.9  | X           | 0.41        |
| 100-D-77          | J1N218      | 1/9/2012    | 151224.4    | 573251.6     | 60.1  | X     | 0.09     | 40.8  | X           | 0.37        |
| 100-D-77          | J1N219      | 1/9/2012    | 151228.4    | 573254.8     | 63.1  | X     | 0.1      | 41.5  | X           | 0.4         |
| 100-D-77          | J1N220      | 1/9/2012    | 151225      | 573254.5     | 65.2  | X     | 0.09     | 37.4  | X           | 0.36        |
| 100-D-77          | J1N221      | 1/9/2012    | 151223.8    | 573258       | 71.2  | X     | 0.43     | 39.4  | X           | 0.37        |
| 100-D-77          | J1N222      | 1/9/2012    | 151183.7    | 573252.3     | 77.7  | X     | 0.47     | 42.9  | X           | 0.39        |
| 100-D-77          | J1N223      | 1/9/2012    | 151185      | 573255.3     | 64.2  | X     | 0.09     | 45.5  | X           | 0.38        |
| 100-D-77          | J1N224      | 1/9/2012    | 151186.4    | 573257.6     | 63.7  | X     | 0.09     | 55.4  | XN          | 0.36        |

| Tab               | le B-3. 100 | -D-62, 100-I | D-77, 100-D- | 83:1 Waste | Characte | rization | and  |         |     |          |               |     |         | 2 pages) |     |           |
|-------------------|-------------|--------------|--------------|------------|----------|----------|------|---------|-----|----------|---------------|-----|---------|----------|-----|-----------|
| LOCATION          | HEIS        | Sample       | Northing     | Easting    | Americ   | ium-24   |      | Cesiu   |     |          | Cob           |     | _       | Europi   |     |           |
| LOCATION          | Number      | Date         | 1401 tibing  | Lasting    | pCi/g    | Q MI     | A    | pCi/g   | Q N | 1DA      | pCi/g         | Q   | MDA     | pCi/g    | Q   | MDA       |
| 100-D-62          | J1H217      | 4/25/2011    | 151154       | 573256     |          |          |      |         |     | 100      |               |     |         |          |     |           |
| 100-D-62          | J1H230      | 4/25/2011    | 151154       | 573256     |          |          |      |         |     |          | ****          |     | 3.7.    | 3.00     |     |           |
| 100-D-62          | J1HNK6      | 5/11/2011    | 151156       | 573256     | 300      |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-62          | J1HNK7      | 5/11/2011    | 151156       | 573256     |          |          |      |         |     |          |               |     | 177.97  |          |     |           |
| 100-D-77          | J1H213      | 4/25/2011    | 151222       | 573248     |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1H215      | 5/4/2011     | 151192       | 573258     |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1H216      | 4/25/2011    | 151185       | 573239     |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1J4W7      | 5/11/2011    |              |            |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1JW09      | 6/16/2011    | 151224.8     | 573251.1   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1JW10      | 6/16/2011    | 151223.3     | 573253.2   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1K4D1      | 7/11/2011    | 151240.3     | 573255     | 100000   |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1K4D2      | 7/11/2011    | 151223.9     | 573255.5   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1K4D3      | 7/11/2011    | 151222.8     | 573249.6   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1K4D4      | 7/11/2011    | 151208.1     | 573251.7   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1K4D5      | 7/11/2011    | 151204.6     | 573266.2   |          |          |      |         |     |          | y             |     |         |          |     |           |
| 100-D-77          | J1K4D6      | 7/11/2011    | 151191.2     | 573260.1   |          |          |      |         |     |          |               | 123 | 11/2017 |          |     |           |
| 100-D-77          | J1K4D7      | 7/11/2011    | 151187.5     | 573233.9   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1K4D8      | 7/11/2011    | 151187.5     | 573251.6   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1K4D9      | 7/11/2011    | 151158.4     | 573257.6   |          |          |      |         |     |          |               |     |         |          |     | V 18      |
|                   |             |              |              | 573254.9   |          | H        |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1K4F0      | 7/11/2011    | 151150.6     |            |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1K4H7      | 7/6/2011     | 151223       | 573251     |          |          |      |         |     | -+       |               |     |         |          |     |           |
| 100-D-77          | J1K4H8      | 7/6/2011     | 151223       | 573250     |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1K4H9      | 7/6/2011     | 151222       | 573247     |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1N0H9      | 12/15/2011   | 151241       | 573250.8   |          |          |      |         |     | $\dashv$ |               | +   |         |          |     |           |
| 100-D-77          | J1N0J0      | 12/15/2011   | 151234.4     | 573242.7   |          | -        |      |         |     | -1       |               |     |         |          |     |           |
| 100-D-77          | J1N0J1      | 12/15/2011   | 151225       | 573240.9   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1N0J2      | 12/15/2011   | 151220       | 573235.7   |          |          |      |         |     |          |               | +   | 224     |          | H   |           |
| 100-D-77          | J1N0J3      | 12/15/2011   | 151212.7     | 573241.7   |          |          |      |         |     |          |               |     |         |          |     | \$2000000 |
| 100-D-77          | J1N0J4      | 12/15/2011   | 151180.1     | 573277.6   |          |          |      |         |     |          |               | 4   |         |          |     |           |
| 100-D-77          | J1N0J5      | 12/15/2011   | 151184.4     | 573278.4   | 16       |          |      |         |     |          | Pulacing size |     |         | 500 (A)  |     |           |
| 100-D-77          | J1N0J6      | 12/15/2011   | 151186.1     | 573273.9   |          |          |      |         |     |          |               | -   |         | 7000     |     |           |
| 100-D-77          | J1N0J7      | 12/15/2011   | 151190.1     | 573273.5   |          |          |      |         |     |          |               | _   |         | 1000     |     |           |
| 100-D-77          | J1N0J8      | 12/15/2011   | 151196.9     | 573273.6   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1N0J9      | 12/19/2011   | 151207.8     | 573263.9   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1N0K0      | 12/19/2011   | 151214.4     | 573270.5   | 10000    |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1N0K1      | 12/19/2011   | 151220.4     | 573267.2   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1N0K2      | 12/19/2011   | 151219.6     | 573260.9   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1N0K3      | 12/19/2011   | 151228.2     | 573265.3   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1N1K4      | 1/3/2012     | 151222.4     | 573249.8   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | JIN1K5      | 1/3/2012     | 151224.8     | 573252.4   |          |          |      |         |     | 1.8.     |               |     |         |          |     |           |
| 100-D-77          | JINIK6      | 1/3/2012     | 151229.6     | 573252.9   |          |          |      |         |     |          |               | 4   |         |          | *** |           |
| 100- <b>D-7</b> 7 | J1N1K7      | 1/3/2012     | 151227.7     | 573258.1   |          |          |      |         |     |          | ***           |     |         |          |     | - 1       |
| 100-D-77          | J1N1K8      | 1/3/2012     | 151221.6     | 573257.3   |          |          |      |         |     |          |               |     |         |          |     |           |
| 100-D-77          | J1N215      | 1/9/2012     | 151222.8     | 573248.9   | 0.0183   | 3 U 0    | .238 |         | -   | 0.025    | 0.0022        |     | 0.031   | -        | 1   | 0.06      |
| 100-D-77          | J1N216      | 1/9/2012     | 151221.8     | 573249     | -0.0137  | 7 U 0    | .121 | -0.0105 | U   | 0.027    | 0.012         | 3 U | 0.028   | 1        |     | 0.07      |
| 100-D-77          | J1N217      | 1/9/2012     | 151222.2     | 573249.6   | 0.0285   | 5 U 0    | .108 | -0.0146 | U   | 0.03     | -0.014        | 1 U | 0.034   | 0.0506   | U   | 0.09      |
| 100-D-77          | J1N218      | 1/9/2012     | 151224.4     | 573251.6   | -0.0183  | 3 U 0    | .057 | -0.0153 | U   | 0.034    | 0.0041        | 7 U | 0.035   | 0.0338   | U   | 0.09      |
| 100-D-77          | J1N219      | 1/9/2012     | 151228.4     | 573254.8   | -0.0355  | 5 U 0    | .122 | 0.0021  | U   | 0.022    | 0.012         | 2 U | 0.025   | -0.0183  | U   | 0.04      |
| 100-D-77          | J1N220      | 1/9/2012     | 151225       | 573254.5   | -0.0199  | UC       | .097 | -0.0158 | U   | 0.028    | 0.0017        | 6 U | 0.035   | 0.0425   | U   | 0.08      |
| 100-D-77          | J1N221      | 1/9/2012     | 151223.8     | 573258     | -0.0203  | 3 U 0    | .058 | 0.01    | U   | 0.038    | -0.010        | 6 U | 0.034   | 0.0071   | U   | 0.09      |
| 100-D-77          | J1N222      | 1/9/2012     | 151183.7     | 573252.3   | -0.0017  |          | .128 |         | U   | 0.021    | 0.0015        | 7 U | 0.022   | 0.0064   | U   | 0.0       |
| 100-D-77          | J1N223      | 1/9/2012     | 151185       | 573255.3   | -0.0622  |          | .212 |         |     | 0.025    | -0.0005       |     | 0.025   |          |     | 0.05      |
| 100-D-77          | J1N224      | 1/9/2012     | 151186.4     | 573257.6   | -0.0258  |          | 114  |         |     | 0.026    |               |     | 0.02    |          |     | 0.0       |

|                      | HEIS             | Sample               | In-Process         |                      | Europ             |               |       | Europ             | iun           | 1-155   | Silver               | -10           | 8m    |
|----------------------|------------------|----------------------|--------------------|----------------------|-------------------|---------------|-------|-------------------|---------------|---------|----------------------|---------------|-------|
| LOCATION             | Number           | Date                 | Northing           | Easting              | pCi/g             | _             | MDA   | pCi/g             | _             | MDA     | pCi/g                |               | MDA   |
| 100-D-62             | J1H217           | 4/25/2011            | 151154             | 573256               |                   |               |       |                   |               |         | 1                    | Ì             |       |
| 100-D-62             | J1H230           | 4/25/2011            | 151154             | 573256               | MINE TO STATE     |               |       |                   |               |         |                      |               |       |
| 100-D-62             | J1HNK6           | 5/11/2011            | 151156             | 573256               |                   |               |       |                   |               |         |                      |               |       |
| 100-D-62             | J1HNK7           | 5/11/2011            | 151156             | 573256               |                   |               | m     |                   |               | 1000    |                      |               |       |
| 100-D-77             | J1H213           | 4/25/2011            | 151222             | 573248               |                   |               |       | THE STATE         |               |         |                      |               |       |
| 100-D-77             | J1H215           | 5/4/2011             | 151192             | 573258               |                   |               |       | MAILE             |               |         |                      |               |       |
| 100-D-77             | J1H216           | 4/25/2011            | 151185             | 573239               |                   |               |       |                   |               |         |                      |               |       |
| 100-D-77             | J1J4W7           | 5/11/2011            |                    |                      |                   |               |       | io la fin         |               |         |                      |               |       |
| 100-D-77             | J1JW 09          | 6/16/2011            | 151224.8           | 573251.1             |                   |               |       | <b>Takes</b>      |               |         |                      |               |       |
| 100-D-77             | J1JW 10          | 6/16/2011            | 151223.3           | 573253.2             |                   |               |       |                   |               |         |                      |               |       |
| 100-D-77             | J1K4D1           | 7/11/2011            | 151240.3           | 573255               | 3022              |               |       | 110               |               |         |                      |               |       |
| 100-D-77             | J1K4D2           | 7/11/2011            | 151223.9           | 573255.5             |                   |               |       |                   |               |         | THE REAL PROPERTY.   |               |       |
| 100-D-77             | J1K4D3           | 7/11/2011            | 151222.8           | 573249.6             |                   |               |       |                   |               |         |                      |               |       |
| 100-D-77             | J1K4D4           | 7/11/2011            | 151208.1           | 573251.7             |                   |               | 3 3   |                   |               | 1/3     |                      |               |       |
| 100-D-77             | J1K4D5           | 7/11/2011            | 151204.6           | 573266.2             | STATE OF          |               |       |                   |               | NAME OF |                      |               |       |
| 100-D-77             | J1K4D6           | 7/11/2011            | 151191.2           | 573260.1             |                   |               |       | 100               | Н             |         |                      |               |       |
| 100-D-77             | J1K4D7           | 7/11/2011            | 151187.5           | 573233.9             |                   |               |       |                   |               |         |                      |               | 3.01  |
| 100-D-77             | J1K4D8           | 7/11/2011            | 151182.6           | 573251.6             |                   |               |       |                   | H             |         | TREE                 |               |       |
| 100-D-7.7            | J1K4D9           | 7/11/2011            | 151158.4           | 573257.6             |                   |               |       | FEI               |               |         |                      | H             |       |
| 100-D-77             | J1K4F0           | 7/11/2011            | 151150.6           | 573254.9             |                   |               | 1000  |                   | Н             |         |                      |               |       |
| 100-D-77             | J1K4H7           | 7/6/2011             | 151223             | 573251               |                   |               |       |                   |               |         |                      |               |       |
| 100-D-77             | J1K4H8           | 7/6/2011             | 151223             | 573250               |                   |               |       |                   |               |         |                      |               |       |
| 100-D-77             | J1K4H9           | 7/6/2011             | 151222             | 573247               |                   |               |       |                   |               |         |                      | H             |       |
| 100-D-77             | J1N0H9           | 12/15/2011           | 151241             | 573250.8             |                   |               |       |                   |               |         |                      |               |       |
| 100-D-77             | J1N0J0           | 12/15/2011           | 151234.4           | 573242.7             |                   |               |       |                   |               |         |                      | H             |       |
| 100-D-77             | J1N0J1           | 12/15/2011           | 151225             | 573240.9             |                   |               |       |                   |               |         |                      | H             |       |
| 100-D-77             | J1N0J2           | 12/15/2011           | 151220             | 573235.7             |                   |               |       |                   | =             |         |                      | $\vdash$      |       |
| 100-D-77             | J1N0J3           | 12/15/2011           | 151212.7           | 573241.7             |                   |               |       |                   |               |         |                      | Н             |       |
| 100-D-77             | J1N0J4           | 12/15/2011           | 151180.1           | 573277.6             |                   |               |       |                   |               |         |                      | Н             |       |
| 100-D-77             | J1N0J5           | 12/15/2011           | 151184.4           | 573278.4             |                   |               |       | 3-1-1-1           |               |         |                      | Н             |       |
| 100-D-77             | J1N0J6           | 12/15/2011           | 151186.1           | 573273.9             |                   |               |       |                   |               |         |                      | $\vdash$      | 1000  |
| 100-D-77             | J1N0J7           | 12/15/2011           | 151190.1           | 573273.5             |                   |               |       |                   |               |         |                      |               |       |
| 100-D-77             | J1N0J8           | 12/15/2011           | 151196.9           | 573273.6             |                   |               |       |                   |               |         |                      |               |       |
| 100-D-77             | J1N0J9           | 12/19/2011           | 151207.8           | 573263.9             |                   |               |       |                   |               |         |                      | $\vdash$      |       |
| 100-D-77             | JINOKO           | 12/19/2011           | 151214.4           | 573270.5             |                   |               |       |                   |               |         |                      |               | -     |
| 100-D-77             | JIN0K1           | 12/19/2011           | 151220.4           | 573267.2             |                   |               |       |                   |               |         |                      | Н             |       |
| 100-D-77             | JIN0K1           | 12/19/2011           | 151219.6           | 573260.9             |                   |               |       |                   |               |         |                      |               | 11-1- |
| 100-D-77             | JIN0K3           | 12/19/2011           | 151228.2           | 573265.3             |                   |               |       |                   |               |         |                      |               |       |
| 100-D-77             | JIN1K4           | 1/3/2012             | 151222.4           | 573249.8             |                   |               |       |                   |               |         |                      |               |       |
| 100-D-77             | JINIK4           | 1/3/2012             | 151224.8           | 573252.4             |                   |               |       | 00000             |               |         |                      | $\vdash$      | 7 7   |
| 100-D-77             | JINIK6           | 1/3/2012             | 151229.6           | 573252.4             |                   |               |       |                   |               |         |                      | $\vdash$      |       |
| 100-D-77             | JINIK7           | 1/3/2012             | 151227.7           | 573258.1             |                   | +             |       |                   |               |         |                      |               |       |
| 100-D-77             | JINIK8           | 1/3/2012             | 151221.6           | 573257.3             |                   | 1             |       |                   |               |         |                      |               |       |
| 100-D-77             | JIN215           | 1/9/2012             | 151221.8           | 573248.9             | -0.015            | 11            | 0.083 | 0.0217            | ,,            | 0.078   | -0.00021             | 11            | 0.00  |
| 100-D-77             | J1N216           | 1/9/2012             | 151221.8           | 573249               | -0.013            | _             | 0.083 | -0.0031           |               | 0.078   | -0.00643             |               | 0.022 |
| 100-D-77             | J1N217           | 1/9/2012             | 151221.8           | 573249.6             | 0.0351            | $\overline{}$ | 0.079 | 0.0686            |               | 0.087   |                      | _             | -     |
| 100-D-77             | J1N217           | 1/9/2012             | 151224.4           | 573251.6             | -0.0475           | _             | 0.116 | 0.0686            | _             | 0.084   | -0.00864<br>-0.00925 | _             | 0.025 |
| 100-D-77             | J1N219           | 1/9/2012             |                    |                      | $\overline{}$     | _             |       | -0.0164           |               |         |                      | $\rightarrow$ | 0.028 |
| 100-D-77             | J1N219<br>J1N220 |                      | 151228.4           | 573254.8             | -0.0064           | $\rightarrow$ |       |                   | $\overline{}$ | 0.055   | 0.000118             | $\rightarrow$ | 0.016 |
| 100-D-77             | J1N220<br>J1N221 | 1/9/2012             | 151225             | 573254.5             | 0.00893           | $\rightarrow$ | 0.098 | 0.033             |               | 0.078   | 0.0116               | $\rightarrow$ | 0.026 |
| 100-D-77             |                  | 1/9/2012             | 151223.8           | 573258               | 0.0352            | -             | 0.119 | 0.0066            | -             | 0.084   | -0.0214              | $\rightarrow$ | 0.027 |
|                      | J1N222           | 1/9/2012             | 151183.7           | 573252.3             | 0.0166            | $\rightarrow$ | 0.07  | 0.0297            | _             | 0.058   | 0.000699             | $\rightarrow$ | 0.015 |
| 100-D-77<br>100-D-77 | J1N223<br>J1N224 | 1/9/2012<br>1/9/2012 | 151185<br>151186.4 | 573255.3<br>573257.6 | 0.0148<br>-0.0173 | - 1           | 0.087 | 0.0128<br>-0.0212 | -             | 0.073   | 0.000256<br>-0.00143 | -             | 0.019 |

| Table B-4. 100-D-62, 100-D-77,           |               |                   | T 1 TTO -  |        |               | F     |            |        |
|------------------------------------------|---------------|-------------------|------------|--------|---------------|-------|------------|--------|
|                                          |               |                   | J1H21      |        | J1H215        |       | J1H21      | 6      |
| CONSTITUENT                              | CT ACC        |                   | 00-D-      |        | 100-D-7       | 7     | 100-D-     | 77     |
| CONSTITUENT                              | CLASS         |                   |            | 573248 | N151192, E5   | 73258 | N151185, E | 573239 |
|                                          |               |                   | 25/20      | 11     | 5/4/201       | 1     | 4/25/20    | 11     |
| Aroclor-1016                             | <del></del> - | ug/kg             | Q          | PQL    | ug/kg Q       | PQL   | ug/kg Q    | PQL    |
| Aroclor-1221                             | PCB           | 2.8               |            | 2.8    | 110 UD        | 110   | 3.2 U      |        |
| Aroclor-1221<br>Aroclor-1232             | PCB_          | 8.2               |            | 8.2    | 330 UD        | 330   | 9.3 U      | ç      |
| Aroclor-1232<br>Aroclor-1242             | PCB           | 2                 | U_         | 2      | 82 UD         | 82    | 2.3 U      |        |
|                                          | PCB_          | <u> </u>          | U          | 4.7    | 190 UD        | 190   | 5.4 U      |        |
| Aroclor-1248                             | PCB           |                   | U          | 4.7    | 190 UD        | 190   | 5.4 U      |        |
| Aroclor-1254                             | PCB           | 2.6               | _ <u>U</u> | 2.6    | 110 UD        | 110   | 42 P       |        |
| Aroclor-1260 Aldrin                      | PCB           | 27                | <br>       | 2.6    | 1800 D        | 110   | 51         |        |
|                                          | PEST          | 0.26              | U          | 0.26   | 0.27 JX       | 0.27  | 0.3 U      | 0      |
| Alpha-BHC                                | PEST          | 0.22              | U          | 0.22   | 0.23 U        | 0.23  | 0.25 U     | 0.2    |
| alpha-Chlordane                          | PEST          | 0.34              |            | 0.34   | 0.9 JB        | 0.35  | 2.5        | 0.3    |
| beta-1,2,3,4,5,6-Hexachlorocyclohexane   | PEST          | 0.69              |            | 0.69   | 1.9           | 0.71  | 0.79 U     | 0.     |
| Diable red in beautiful                  | PEST          | 0.42              |            | 0.42   | 0.44 X        | 0.43  | 0.47 U     | 0.4    |
| Dichlorodiphenyldichloroethane           | PEST          | 0.57              |            | 0.57   | 0.59 U        | 0.59  | 0.65 U     | 0.0    |
| Dichlorodiphenyldichloroethylene         | PEST          | 0.25              |            | 0.25   | 1.4 JX        | 0.26  | 17         | 0.2    |
| Dichlorodiphenyltrichloroethane Dieldrin | PEST          | 0.97              |            | 0.62   | 6.3 UD        | 6.3   | 20 X       | 0      |
| Dieigrin<br>Endosulfan I                 | PEST          | 0.22              | _U         | 0.22   | 0.23 U        | 0.23  | 7.2        | 0.2    |
|                                          | PEST          | 0.18              | U          | 0.18   | 0.19 U        | 0.19  | 0.21 U     | 0.2    |
| Endosulfan II                            | PEST          | 0.3               | U          | 0.3    | 0.31 U        | 0.31  | 0.34 U     | 0.3    |
| Endosulfan sulfate                       | PEST          | 0.29              | <u>U</u>   | 0.29   | 0.3 U         | 0.3   | 0.33 U     | 0.3    |
| Endrin                                   | PEST          |                   | _U         | 0.32   | 0.33 U        | 0.33  | 0.36 U     | 0.3    |
| Endrin aldehyde                          | PEST          |                   | <u>U</u>   | 0.18   | 0.18 U        | 0.18  | 0.2 U      | 0.     |
| Camma-BHC (Lindane)                      | PEST          | 0.51              |            | 0.51   | 0.52 U        | 0.52  | 0.58 U     | 0.5    |
| amma-Chlordane                           | PEST          |                   | <u>U</u>   | 0.48   | 0.5 U         | 0.5   | 0.55 U     | 0.5    |
| Jeptachlor                               | PEST          |                   | <u>U</u>   | 0.28   | 0.29 U        | 0.29  | 3.2        | 0.3    |
| leptachlor epoxide                       | PEST          | i                 | U          | 0.22   | 0.23 U        | 0.23  | 0.25 U     | 0.2    |
| Methoxychlor                             | PEST          |                   | U          | 0.44   | <b>0.46</b> U | 0.46  | 0.5 U      | 0.     |
| Toxaphene                                | PEST          |                   | <u>U</u>   | 0.47   | 0.48 U        | 0.48  | 0.53 U     | 0.5    |
| ,2,4-Trichlorobenzene                    | PEST          |                   | <u>U</u>   | 16     | 170 UD        | 170   | 19 U       | 1      |
| ,2-Dichlorobenzene                       | SVOA          |                   | <u>U</u>   | 29     | 30_U          | 30    | 32 U       | 3      |
| ,3-Dichlorobenzene                       | SVOA          |                   | <u>U</u> _ | 23     | 23_U          | 23    | 25 U       | 2:     |
| ,4-Dichlorobenzene                       | SVOA          |                   | <u>U</u>   | 12     | 13_U          | 13    | 14 U       | 14     |
| ,4,5-Trichlorophenol                     | SVOA          | 14                |            | 14     | 14_U          | 14    | 15 U       | 1:     |
| 4,6-Trichlorophenol                      | SVOA          | 10                |            | 10     | 11_U          | 11    | 11 U       | 1      |
| 4-Dichlorophenol                         | SVOA          | !                 | U          | 10     | 11 U          | 11    | 11 U       | 11     |
| 4-Dimethylphenol                         | SVOA          |                   | U          | 10     | 11 U          | 11    | 11 U       | 11     |
| 4-Dinitrophenol                          | SVOA          |                   | <u>U</u> _ | 69     | 70_U          | 70    | 75 U       | 75     |
| 4-Dinitrophenol                          | SVOA          |                   | <u>U</u>   | 350    | 350 U         | 350   | 380 U      | 380    |
| 6-Dinitrotoluene                         | SVOA          |                   | <u>U</u>   | 69     | 70_U          | 70    | 75 U       | 75     |
| Chloronaphthalene                        | SVOA          | 29 1              |            | 29     | 30 U          | 30    | 32 U       | 32     |
| Chlorophenol                             | SVOA          |                   | <u>U</u>   | 10     | 11_U          | 11    | 11_U       | 11     |
| Methylnaphthalene                        | SVOA          | 22 1              |            | 22     | 22 U          | 22    | 24 U       | 24     |
| Methylphenol (cresol, o-)                | SVOA          | 20 U              |            | 20     | 20 U          | 20    | 22 U       | 22     |
| Nitroaniline                             | SVOA          | 14 U              |            | 14     | 14 U          | 14    | 15 U       | 15     |
| Nitrophenol                              | SVOA          | <u>52</u> U       |            | 52     | 53_U          | 53    | 57 U       | 57     |
| 4 Methylphenol (cresol, m+p)             | SVOA          | 10                |            | 10     | <u>_11_U</u>  | 11    | 11 U       | 11     |
| . Meany iphenor (cresor, m+p)            | SVOA          | 34 <sub>.</sub> [ | <u></u>    | 34     | 35 U          | 35    | 38_U       | 38     |

| Table B-4. 100-D-62, 100-D-77,   |       | J:     | 1H213        | , <u> </u>    |          | J1H215         | <u>,                                    </u> |              | 11210             |          |
|----------------------------------|-------|--------|--------------|---------------|----------|----------------|----------------------------------------------|--------------|-------------------|----------|
|                                  | l t   |        | 0-D-7        | -             |          | 100-D-7        | 7                                            | 10           | 0-D-77            | 7        |
| CONCTUTIENT                      | CLASS | N15122 |              |               | N151     | 192, E5        | 73258                                        | N15118       | 35, E57           | /3239    |
| CONSTITUENT                      | CE SS |        | 25/201       | $\overline{}$ |          | 5/4/201        |                                              | 4/2          | 25/201            | 1        |
|                                  | }     | ug/kg  | Q            | PQL           | ug/kg    | $\neg \neg$    | PQL                                          | ug/kg        | Q                 | PQL      |
| 3'-Dichlorobenzidine             | SVOA  | 94     |              | 94            | 9        | 96 U           | 96                                           | 100          |                   | 100      |
| Nitroaniline                     | SVOA  | 76     | U            | 76            | 7        | 77 U           | 77                                           |              | U                 | 83       |
| 6-Dinitro-2-methylphenol         | SVOA  | 340    | U            | 340           | 35       | 50 U           | 350                                          | 380          | U                 | 380      |
| Bromophenylphenyl ether          | SVOA  | 20     |              | 20            | 2        | 20 U           | 20                                           | 22           | U                 | 22       |
| -Chloro-3-methylphenol           | SVOA  | 69     | l            | 69            | 1        | 70 U           | 70                                           | 75           | U                 | 7:       |
|                                  | SVOA  | 85     | U            | 85            |          | 87 U           | 87                                           | 93           | U                 | <u> </u> |
| -Chloroaniline                   | SVOA  | 22     | -            | 22            | 1        | 22 U           | 22                                           | 24           | U                 |          |
| -Chlorophenylphenyl ether        | SVOA  | 75     | <del></del>  | 75            |          | 77 U           | 77                                           | 83           | U                 | 8.       |
| -Nitroaniline                    |       | 100    | i            | 100           |          | 00 U           | 100                                          | 110          | U                 | 110      |
| -Nitrophenol                     | SVOA  | 1100   | i            | 11            |          | 11 U           | 11                                           |              | U                 | 1        |
| cenaphthene                      | SVOA  | 18     |              | 18            |          | 18 U           | 18                                           |              | U                 | 1        |
| cenaphthylene                    | SVOA  | 18     |              | 18            |          | 18 U           | 18                                           | <del></del>  | U                 | 1        |
| Anthracene                       | SVOA  |        |              |               | <b>-</b> | 24 J           | 21                                           | <del></del>  |                   | 2        |
| Benzo(a)anthracene               | SVOA  | 21     | i            | 21<br>21      |          | 24 J<br>29 J   | 21                                           |              |                   | 2        |
| Benzo(a)pyrene                   | SVOA  | 21     |              |               | l .      | 29 J<br>28 U   | 28                                           | 1            | 5 JX              | 3        |
| Benzo(b)fluoranthene             | SVOA  | 27     |              | 27            | l .      |                | 17                                           |              |                   | 1        |
| Benzo(ghi)perylene               | SVOA  | 17     |              |               | <b>-</b> |                | 42                                           | 1            | 5 UX              | 4        |
| Benzo(k)fluoranthene             | SVOA  | 42     |              | 42            | +        | 42 <u>U</u>    |                                              | <del></del>  | 6 U               |          |
| Bis(2-chloro-1-methylethyl)ether | SVOA  | 24     |              | 24            | +        | 24 U           | 24                                           | +            | 6 U               |          |
| Bis(2-Chloroethoxy)methane       | SVOA  | 2      | <u>U</u>     | 24            | +        | 24 U           | 24                                           | <del></del>  | 9 U               |          |
| Bis (2-chloroethyl) ether        | SVOA  | 1      | 7 U_         | 17            |          | <u> 18 U</u> _ | 18                                           | +            |                   |          |
| Bis(2-ethylhexyl) phthalate      | SVOA  | 4      | i            | 48            |          | 49 U           | 49                                           | 1            |                   |          |
| Buty lbenzy lphthalate           | SVOA  | 4      | 5 U          | 45            | 5        | 46 U           | 40                                           |              | 9 U               |          |
| Carbazole                        | SVOA  | 3      | 7 U          | 37            | 7        | 38 U           | 38                                           | 1            | 1                 | •        |
| Chrysene                         | SVOA  | 2      | 8 U          | 28            | B        | 35 J           | 29                                           | ´l -         | 6 J               |          |
| Di-n-butylphthalate              | SVOA  | 3      | 0 U          | 30            | 0        | 31 U           | 3                                            | <b>^</b>     | 3 J               |          |
| Di-n-octylphthalate              | SVOA  | 1      | 5 U          | 1             | 5        | 15 U           | 1                                            | +            | 6 U               |          |
| Dibenz[a,h]anthracene            | SVOA  | 7 2    | 0 U          | 2             | 0        | 20 U           | 2                                            |              | 2 U               |          |
| Dibenzo furan                    | SVOA  |        | 1 U          | 2             | 1        | 21 U           | 2                                            | <del>-</del> | 23 U              | <br>]    |
| Diethyl phthalate                | SVOA  |        | 27 U         | 2             | 7        | 28 U           | 2                                            | <del>-</del> | 0 U               | ļ        |
|                                  | SVOA  |        | 24 U         | 2             | 4        | 24 U           | 2                                            |              | 26 U              |          |
| Dimethyl phthalate               | SVOA  |        | 37 U         | 3             | 7        | 38 U           | 3                                            | 8            | 56 J              |          |
| Fluoranthene                     | SVOA  |        | 19 U         |               | 9        | 19 U           | 1                                            | 9 2          | 21_U              |          |
| Fluorene                         | SVOA  |        | 30 U         | 3             | 30       | 31 U           | 3                                            | 1 3          | 33 U              |          |
| Hexachlorobenzene                | SVOA  |        | 10 U         |               | 10       | 11 U           | 1                                            | 1            | 11 U              |          |
| Hexachlorobutadiene              | SVOA  |        | 52 U         |               | 52       | 53 U           |                                              | 53           | 57 U              | <u> </u> |
| Hexachlorocyclopentadiene        | SVOA  | _+     | 22 U         |               | 22       | 23 U           |                                              | 23           | 24 U              | ļ        |
| Hexachloroethane                 | SVOA  |        | 23 U         |               | 23       | 23 U           |                                              |              | 25 U              |          |
| Indeno(1,2,3-cd)pyrene           |       |        | 18 U         |               | 18       | 18 U           |                                              |              | 19 U              |          |
| Isophorone                       | SVOA  |        | 32 U         |               | 32       | 33 U           |                                              |              | 35 U              |          |
| N-Nitroso-di-n-dipropy lamine    | SVOA  |        |              |               | 22       | 22 U           |                                              |              | 24 U              |          |
| N-Nitrosodiphenylamine           | SVOA  |        |              |               | 32       | 33 <u>U</u>    |                                              |              | 35 U              |          |
| Naphthalene                      | SVOA  |        | 32 U         |               |          | 23 U           |                                              |              | 25 U              |          |
| Nitrobenzene                     | SVOA  | 1      | 23 U         |               | 23       | 350 U          |                                              | 1            | 80 U              |          |
| Pentachlorophenol                | SVO   | ľ      | 40 U         |               | 40       | 25 J           |                                              | 1            | 23 J              |          |
| Phenanthrene                     | SVO   | 1      | 18 U         |               | 18       |                |                                              |              | 23 J<br>21 U      |          |
| Phenol                           | SVOA  |        | 19 U<br>13 U |               | 19<br>13 | 19 U<br>34 J   |                                              | 13           | $\frac{21}{54}$ J |          |

| 11.11000                               | s Samples - |             |            |        |          |                 |                |
|----------------------------------------|-------------|-------------|------------|--------|----------|-----------------|----------------|
|                                        |             |             | 1H21       |        |          | 1H23            |                |
| CONSTITUENT                            | CTAGG       |             | 00-D-      |        |          | 00- <b>D-</b> 0 |                |
| CONSTITUENT                            | CLASS       |             |            | 573256 |          |                 | <u> 573256</u> |
|                                        |             |             | 25/20      |        |          | <u> 25/20</u>   |                |
| Aroclor-1016                           | - DCID      | ug/kg       | Q          | PQL_   | ug/kg    | Q               | PQL            |
| Aroclor-1221                           | PCB         |             | UD         | 18     |          | UD              |                |
| Aroclor-1232                           | PCB         |             | <u>UD</u>  | 51     | 210      | <u>UD</u>       | 2              |
| Aroclor-1242                           | PCB         |             |            | 13     | 54       | UD              |                |
| Aroclor-1248                           | PCB         |             | UD         | 30     | 120      | UD_             | 1              |
| Aroclor-1254                           | PCB         |             | UD         | 30     | 120      |                 | 1              |
| Aroclor-1260                           | PCB         | 350         |            | 16     | 1100     | DP              |                |
| Aldrin                                 | PCB         | 500         | _D         | 16     | 1500     | _D              |                |
| Alpha-BHC                              | PEST        | 0.32        | <u>U</u>   | 0.32   | 1.3      | <u>U</u>        | 1              |
| alpha-Chlordane                        | PEST        | 4.5         | X          | 0.27   | 7        | JX              | 1              |
| beta-1,2,3,4,5,6-Hexachlorocyclohexane | PEST        | 1.9         | _ <u>J</u> | 0.41   | 1.6      | U               | 1              |
| Delta-BHC                              | PEST        | 0.85        | <u>U</u> _ | 0.85   | 3.4      |                 | 3              |
| Dichlorodiphenyldichloroethane         | PEST        | 0.51        | U          | 0.51   | 4.6      | J               |                |
| Dichlorodiphenyldichloroethylene       | PEST        | 0.7         | <u>U</u>   | 0.7    | 2.8      | UN              | 2              |
| Dichlorodipheny trichloroethane        | PEST        | 12          |            | 0.3    | 93       | <u>N</u>        | 1              |
| Dieldrin                               | PEST        | 1           | X          | 0.75   | 16       | $\mathbf{X}$    |                |
| Endosulfan I                           | PEST        |             | <u>U</u>   | 0.27   | 1.1      | U               | 1              |
| Endosulfan II                          | PEST        |             | _U         | 0.22   | 0.89     | UN_             | 0.8            |
| Endosulfan sulfate                     | PEST        |             | U          | 0.37   | 1.5      | U               | 1              |
| Endrin                                 | PEST        |             | <u>U</u>   | 0.35   | 1.4      | U               | 1.             |
| Endrin aldehyde                        | PEST        | 0.39        |            | 0.39   | 1.5      | U               | 1.             |
| Endrin ketone                          | PEST        |             | <u>U</u>   | 0.22   | 0.86     | U               | 0.8            |
| Gamma-BHC (Lindane)                    | PEST        |             | <u>U</u>   | 0.62   | 2.5      | U               | 2.             |
| gamma-Chlordane                        | PEST        |             | <u>U</u>   | 0.59   |          | U               | 2.             |
| Heptachlor                             | PEST        | 5.3         |            | 0.34   |          | JX              | 1.             |
| leptachlor epoxide                     | PEST        |             | U          | 0.27   | 1.1      | UN_             | 1.             |
| Methoxychlor                           | PEST        |             | U          | 0.54   |          | JX_             | 2.             |
| Oxaphene                               | PEST        |             | <u>U</u>   | 0.57   | 2.3      | <u>U</u>        | 2.             |
| ,2,4-Trichlorobenzene                  | PEST        |             | <u>U</u>   | 20     | 80       | U               | 8              |
| ,2-Dichlorobenzene                     | SVOA        |             | <u>U</u>   | 34     | 150      | U               | 15             |
| ,3-Dichlorobenzene                     | SVOA        |             | U          | 27     |          | <u>J</u>        | 12             |
| ,4-Dichlorobenzene                     | SVOA        |             | U          | 15     |          | U               | 6              |
| 4,5-Trichlorophenol                    | SVOA        |             | <u>J</u>   | 17     | 200000 I |                 | 720            |
| 4,6-Trichlorophenol                    | SVOA        |             | <u>U</u>   | 12     |          | <u>U</u>        | 53             |
| 4-Dichlorophenol                       | SVOA        |             | <u>U</u>   | 12     |          | <u>U</u>        | 53             |
| 4-Dimethylphenol                       | SVOA        |             | <u>U</u>   | 12     |          | <u>U</u>        | 53             |
| 4-Dinitrophenol                        | SVOA        |             | <u>U</u>   | 81     |          | <u>U</u>        | 350            |
| 4-Dinitrotoluene                       | SVOA        |             | U          | 410    |          | U               | 1800           |
| 6-Dinitrotoluene                       | SVOA        |             | U          | 81     |          | <u>U</u>        | 350            |
| Chloronaphthalene                      | SVOA        |             | IJ         | 34     |          | <u>J</u>        | 150            |
| Chlorophenol                           | SVOA        | 1           | J          | 12     | !        | J               | 53             |
| Methy Inaphthalene                     | SVOA        | 26 U        |            | 26     |          | J               | 110            |
| Methylphenol (cresol, o-)              | SVOA        | 23 U        |            |        |          | <u> </u>        | 100            |
| Nitroaniline                           | SVOA        | 16 U        |            | 16     | 69 t     |                 | 69             |
| Nitrophenol                            | SVOA        | 61 <u>U</u> |            | 61     | 270t     |                 | 270            |
| opitolioi                              | SVOA        | 12 U        | J          | 12     | 53 t     | J               | 53             |

| In-Proce                            | ess Samples - | Organics. | _(4 pa              | iges) |        |          |     |
|-------------------------------------|---------------|-----------|---------------------|-------|--------|----------|-----|
|                                     |               |           | 1 H2 1'             |       |        | 1H230    |     |
|                                     | ] [           | 10        | 0-D-6               | 52    |        | 0-D-6    |     |
| CONSTITUENT                         | CLASS         | N15115    | 54 <u>, E</u> 5     | 73256 | N15115 |          |     |
|                                     |               | 4/2       | 25/20               | 11    |        | 5/201    |     |
|                                     |               | ug/kg     | Q                   | PQL   | ug/kg  | Q        | PQL |
| 3'-Dichlorobenzidine                | SVOA          | 110       | U                   | 110   | 480    | _U       | 480 |
| -Nitroaniline                       | SVOA          | 89        | U                   | 89    | 390    |          | 390 |
| ,6-Dinitro-2-methylphenol           | SVOA          | 400       | U                   | 400   | 1800   |          | 180 |
| -Bromophenylphenyl ether            | SVOA          | 23        | U                   | 23    | 100    |          | 10  |
| -Chloro-3-methylphenol              | SVOA          | 81        | U                   | 81    | 350    |          | 35  |
| -Chloroaniline                      | SVOA          | 100       | U                   | 100   | 440    | U        | 44  |
| -Chlorophenylphenyl ether           | SVOA          | 26        | U                   | 26    | 110    | U        | 11  |
| -Nitroaniline                       | SVOA          | 88        | U                   | 88    | 390    | U_       | 39  |
| l-Nitrophenol                       | SVOA          | 120       | U                   | 120   | 520    | <u>U</u> | 52  |
| Acenaphthene                        | SVOA          | 13        | U                   | 13    | 310    | J        | 5   |
| Acenaphthylene                      | SVOA          | 21        | U                   | 21    | 90     | U        | 9   |
| Anthracene                          | SVOA          | 29        | J                   | 21    | 250    | J        | 9   |
| Benzo(a)anthracene                  | SVOA          | 150       | ) J                 | 24    | 370    | J        | 11  |
|                                     | SVOA          | 160       | ) J                 | 24    | 290    | J        | 11  |
| Benzo(a)pyrene Benzo(b)fluoranthene | SVOA          | 270       | ) JX                | 32    | 530    | JX       | 14  |
| Benzo(ghi)perylene                  | SVOA          | 160       | ) J                 | 20    | 85     | U_       | 8   |
| Benzo(k)fluoranthene                | SVOA          | 49        | UX                  | 49    | 210    | UX       | 21  |
| Bis(2-chloro-1-methylethyl)ether    | SVOA          | 28        | 3 U                 | 28    | 120    | ) U_     | 12  |
| Bis(2-Chloroethoxy)methane          | SVOA          | 28        |                     | 28    | 120    | U        | 12  |
| Bis(2-chloroethyl) ether            | SVOA          | 20        | ) U                 | 20    | 88     | 3 U      | ;   |
| Bis (2-ethylhexyl) phthalate        | SVOA          | 1200      |                     | 56    | 240    | U        | 24  |
| · -                                 | SVOA          | 52        | 2 U                 | 52    | 230    | U_       | 2:  |
| Buty lbenzy lphthalate              | SVOA          | 4         |                     | 44    | 190    | U        | 19  |
| Carbazole                           | SVOA          | 190       | 0 J                 | 33    | 460    | ) J      | 1.  |
| Chrysene                            | SVOA          | 500       |                     | 35    | 1400   | 0 J      | 1.  |
| Di-n-butylphthalate                 | SVOA          |           | 8 U                 | 18    | 7      | 7 U      |     |
| Di-n-octylphthalate                 | SVOA          | 2         |                     | 23    | 10     | 0 U      | ì   |
| Dibenz[a,h]anthracene               | SVOA          | 2         |                     | 24    |        | 0 J      | 1   |
| Dibenzofuran                        | SVOA          |           | 2 U                 | 32    | 2 14   | 0 U      | 1   |
| Diethyl phthalate                   | SVOA          |           | 8 U                 | 28    | t      | 0 U      | 1   |
| Dimethyl phthalate                  | SVOA          |           |                     | 44    |        | 0 J      | 1   |
| Fluoranthene                        | SVOA          |           | 2 U                 | 22    |        | 0 J      |     |
| Fluorene                            | SVOA          |           | 5 U                 | 3:    |        | 0 U      | 1   |
| Hexachlorobenzene                   | SVOA          |           | 2 U                 |       |        | 3 U      |     |
| Hexachlorobutadiene                 | SVOA          |           | 51 U                |       |        | 70 U     |     |
| Hexachlorocyclopentadiene           | SVOA          | 1         | 26 U                | 1     |        | 0 U      | 1   |
| Hexachloroethane                    | SVOA          |           | 20 J                | 2     | 1      | 20 U     |     |
| Indeno(1,2,3-cd)pyrene              | SVOA          |           | 21 U                |       |        | 90 U     |     |
| Isophorone                          | SVOA          |           | 38 U                |       |        | 70 U     |     |
| N-Nitroso-di-n-dipropy lamine       | SVOA          |           | 26 U                |       |        | 10 U     |     |
| N-Nitrosodiphenylamine              | SVOA          |           | 38 U                |       |        | 90 J     |     |
| Naphthalene                         | SVOA          | _+        | 27 U                |       |        | 20 U     |     |
| Nitrobenzene                        |               | 1         | 27 U<br>00 U        |       | 1      | 00 U     |     |
| Pentachlorophenol                   | SVOA          | l l       | 86 J                |       | 1 160  |          |     |
| Phenanthrene                        | SVOA          |           | 22 U                |       |        | 96 U     |     |
| Phenol                              | SVOA          |           | 22 <u>∪</u><br>40 J |       | 5 10   |          |     |

# APPENDIX C CALCULATIONS

# APPENDIX C

# · CALCULATION BRIEFS

The calculations provided in this appendix are copies of the originals that are kept in the active Washington Closure Hanford project files and are available upon request. When the project is completed, the files will be stored in a U.S. Department of Energy, Richland Operations Office repository. These calculations have been prepared in accordance with ENG-1, *Engineering Services*, ENG-1-4.5, "Project Calculations," Washington Closure Hanford, Richland, Washington. The calculations provided in this appendix include:

- 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations, 0100D-CA-V0508, Rev. 0, Washington Closure Hanford, Richland, Washington.
- 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Direct Contact Hazard Quotient and Carcinogenic Risk Calculation, 0100D-CA-V0509, Rev. 0, Washington Closure Hanford,
   Richland, Washington.
- 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Protection of Groundwater Hazard Quotient and Carcinogenic Risk Calculation, 0100D-CA-V0510, Rev. 0, Washington Closure Hanford, Richland, Washington.

# **DISCLAIMER FOR CALCULATIONS**

The calculations that are provided in this appendix have been generated to document compliance with established cleanup levels. These calculations should be used in conjunction with other relevant documents in the administrative record.

Acrobat 8.0

# **CALCULATION COVER SHEET**

| Project 1  | Title: 100-D Field Remediat                         | ion                                       |                                         |                                             | Joi                                | b No. 14655     |
|------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------|---------------------------------------------|------------------------------------|-----------------|
| Area: _1(  | 00-D                                                |                                           |                                         |                                             |                                    |                 |
| Disciplin  | e: Environmental                                    |                                           | *Ca                                     | lculation No: 01                            | 00D-CA-V0508                       |                 |
| Subject:   | 100-D-77, 100-D-62, and                             | 100-D-83:1 Waste                          |                                         |                                             |                                    |                 |
|            | er Program: Excel                                   |                                           |                                         | am No: Excel 20                             |                                    |                 |
| The att    | ached calculations have been<br>should be used in o | generated to docu<br>conjunction with oth | ment compliance v<br>ner relevant docum | vith established cle<br>ents in the adminis | anup levels. These trative record. | e calculations  |
| Committe   | ed Calculation 🛛                                    | Prelimina                                 | ry 🗆                                    | Superseded [                                | Voi                                | ded [           |
| Rev.       | Sheet Numbers  Cover = 1                            | Originator                                | Checker                                 | Reviewer                                    | Approval                           | Date            |
| 0          | Sheets = 24<br>Attm. 1 = 31<br>Total = 56           | N. K. Schiffern<br>N. K. Schiffern        | J. D. Skoglie                           | CH ONLY                                     | D. F. Obenauer  D. J. Ohina        |                 |
|            |                                                     |                                           |                                         |                                             |                                    |                 |
|            |                                                     |                                           |                                         |                                             |                                    |                 |
|            |                                                     |                                           |                                         |                                             |                                    |                 |
|            |                                                     | SUMMA                                     | ARY OF RE                               | VISION                                      |                                    |                 |
|            |                                                     |                                           |                                         |                                             |                                    |                 |
|            |                                                     |                                           |                                         |                                             |                                    |                 |
|            |                                                     |                                           |                                         |                                             | · ·                                |                 |
|            |                                                     |                                           |                                         |                                             |                                    |                 |
|            |                                                     |                                           |                                         |                                             |                                    |                 |
|            |                                                     |                                           |                                         |                                             |                                    |                 |
|            |                                                     |                                           |                                         |                                             |                                    |                 |
| İ          |                                                     |                                           |                                         |                                             |                                    |                 |
|            |                                                     |                                           |                                         |                                             |                                    |                 |
|            |                                                     | · .                                       |                                         |                                             |                                    |                 |
| VCH-DE-018 | 3 (05/08/2007)                                      |                                           | *Obtain                                 | Calc. No. from Docu                         | ment Control and For               | m from Intranet |

#### **CALCULATION SHEET**

| Originator N. K. Schiffern 10                                               | Date    | 07/08/13     | Calc. No.        | 0100D-CA-V0508_g |                                    |
|-----------------------------------------------------------------------------|---------|--------------|------------------|------------------|------------------------------------|
| Originator 14:10 Company disting                                            | Job No. | 14655        | Checked          | J. D. Skoglie    | Date 07/08/13<br>Sheet No. 1 of 24 |
| Project 100-D Field Remediation  Subject 100-D-77, 100-D-62, and 100-D-83:1 | Waste S | ites Cleanup | Verification 95% | UCL Calculations | Sheet No 1 of 24                   |

#### **Summary**

Purpose:

15 16

> 27 28

32 33 34

35

36

39

40 41 42

44

45

48 49

50

53

54 55

57 58

60

Calculate the 95% upper confidence limit (UCL) values to evaluate compliance with cleanup standards for the subject site. Also, perform the Washington Administrative Code (WAC) 173-340-740(7)(e) Model Toxics Control Act (MTCA) 3-part test for nonradionuclide analytes and calculate the relative percent difference (RPD) for primary-duplicate sample pairs for each contaminant of concern (COC) and contaminant of potential concern (COPC), as necessary.

#### **Table of Contents:**

Sheets 1 to 5 - Calculation Sheet Summary 10

Sheet 6 to 16 - Calculation Sheet Verification Data Statistical and Maximum - Excavation and Staging Pile Area

Sheet 17 to 21 - Ecology Software (MTCAStat) Results

Sheet 22 to 24 - Calculation Sheet Duplicate/Split Analysis

Attachment 1 - 100-D-62, 100-D-77, and 100-D-83:1, Verification Sampling Results (31 sheets)

#### Given/References:

1) Sample Results (Attachment 1).

17 2) DOE-RL, 2009a, 100 Area Remedial Action Sampling and Analysis Plan (SAP), DOE/RL-96-22, Rev. 5, U.S. Department of 18 Energy, Richland Operations Office, Richland, Washington.

3) DOE-RL, 2009b, Remedial Design Report/Remedial Action Work Plan for the 100 Area (RDR/RAWP), DOE/RL-96-17, Rev.

6, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

4) Ecology, 1992, Statistical Guidance for Ecology Site Managers, Publication #92-54, Washington Department of Ecology,

Olympia, Washington.

5) Ecology, 1993, Statistical Guidance for Ecology Site Managers, Supplement S-6, Analyzing Site or Background Data with Below-detection Limit or Below-PQL Values (Censored Data Sets), Publication #92-54, Washington Department of Ecology,

6) Ecology, 2012, Cleanup Levels and Risk Calculations (CLARC) Database, Washington State Department of Ecology,

Olympia, Washington, <a href="https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx">https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx</a>

7) EPA, 1989, Risk Assessment Guidance for Superfund: Volume 1, Human Health Evaluation Manual, Part A; Interim Final, EPA/540/1-89/002, U.S. Environmental Protection Agency, Washington, D. C.

8) WAC 173-340, 1996, "Model Toxic Control Act - Cleanup," Washington Administrative Code.

Calculation methodology is described in Ecology Pub. #92-54 (Ecology 1992, 1993), below, and in the RDR/RAWP (DOE-RL 2006b). Use data from attached worksheets to perform the 95% UCL calculation for each analyte, the WAC 173-340-740(7)(e) 3-part test for nonradionuclides, and the RPD calculations for each COC/COPC. The hazard quotient and carcinogenic risk calculations are located in a separate calculation brief as an appendix to the Remaining Sites Verification Package (RSVP).

#### Calculation Description:

The subject calculations were performed on statistical data from soil verification samples (Attachment 1) from the 100-D-62, 100-D-77, and 100-D-83:1 waste sites. The data were entered into an EXCEL 2003 spreadsheet and calculations performed by using the built-in spreadsheet functions and/or creating formulae within the cells. The statistical evaluation of data for use in accordance with the RDR/RAWP (DOE-RL 2006b) is documented by this calculation. Duplicate RPD results are used in evaluation of data quality within the RSVP for these sites.

The 100-D-62, 100-D-77, and 100-D-83:1 waste sites underwent verification sampling at two decision units: Excavation Area and Staging Pile Area. Twelve statistical samples were collected from each decision unit. Also included with the statistical samples were one duplicate and one split sample from each decision unit. In addition, ten focused samples were collected from Excavation decision unit. Benzo(a)pyrene results from sample location EXC-3 and the entire data from sample HEIS numbers J1PW84, J1R648, J1R650, J1R651, and J1PWC8 are provided for informational purposes only as discussed in the RSVP for these sites. Further information is explained in the RSVP.

Analytical results for all sampling locations are summarized in the tables provided on sheets 4 and 5. Further information of the sample data quality is presented in the data quality assessment section of the associated RSVP.

#### **CALCULATION SHEET**

| Originator N. K. Schiffern W               |               | 07/01/13    | Calc. No.     | 0100D-CA-V0508 a   | Rev. No.  | 0       |
|--------------------------------------------|---------------|-------------|---------------|--------------------|-----------|---------|
| Project 100-D Field Remediation            | Job No.       | 14655       | Checked       | J. D. Skoglie      | Date 07   | 7/01/13 |
| Subject 100-D-77, 100-D-62, and 100-D-83:1 | Waste Sites C | leanup Veri | fication 05%  | UCL Calculations   |           |         |
|                                            |               | VC11        | iloution 3376 | OOL Calculations . | Sheet No. | 2 01 24 |

#### Summary (continued)

8

12 13

14

15

18

19

20 21

29

30 31

36

37

39

40

43

44 45

46 47

48 49

53

54

#### Methodology, continued:

For nonradioactive analytes with ≤ 50% of the data below detection limits, the statistical value calculated to evaluate the effectiveness of cleanup is the 95% UCL. For nonradioactive analytes with >50% of the data below detection limits, as determined by direct inspection of the sample results (Attachment 1), the maximum detected value for the data set (which includes primary and duplicate samples) is used instead of the 95% UCL, and no further calculations are performed for those data sets. For convenience, these maximum detected values are included in the summary tables that follow. The 95% UCL was not calculated for data sets with no reported detections. Calculated cleanup levels are not available in (Ecology 2012) under WAC 173-340-740(3) for calcium, magnesium, potassium, silicon, and sodium. The EPA's *Risk Assessment Guidance for Superfund* (EPA 1989) recommends that aluminum and iron not be considered in site risk evaluations. Therefore, aluminum, calcium, iron, magnesium, potassium, silicon, and sodium are not considered site COCs/COPCs and are also not included in these calculations.

All nonradionuclide data reported as being undetected are set to ½ the detection limit value for calculation of the statistics (Ecology 1993). For the statistical evaluation of duplicate sample pairs, the samples are averaged before being included in the data set, after adjustments for censored data as described above. For radionuclide data, calculation of the statistics is done using the reported value. In cases where the laboratory does not report a value below the minimum detectable activity (MDA), half of the MDA is used in the calculation. For the statistical evaluation of duplicate sample pairs, the samples are averaged before being included in the data set, after adjustments for censored data as described above.

For nonradionuclides, the WAC 173-340 statistical guidance suggests that a test for distributional form be performed on the data and the 95% UCL calculated on the appropriate distribution using Ecology software. For nonradionuclide small data sets (n < 10), the calculations are performed assuming nonparametric distribution, so no tests for distribution are performed. For nonradionuclide data sets of ten or greater, as for the subject site, distributional testing is done using Ecology's MTCAStat software (Ecology 1993). Due to differences in addressing censored data between the RDR/RAWP

(DOE-RL 2006b) and MTCAStat coding and due to a limitation in the MTCAStat coding (no direct capability to address variable quantitation limits within a data set), substitutions for censored data are performed before software input and the resulting data set treated as uncensored.

The WAC 173-340-740(7)(e) 3-part test is performed for nonradionuclide analytes only and determines if:

1) the 95% UCL exceeds the most stringent cleanup limit for each COPC/COC,

2) greater than 10% of the raw data exceed the most stringent cleanup limit for each COPC/COC,

3) the maximum value of the raw data set exceeds two times the most stringent cleanup limit for each COPC/COC.

The RPD is calculated when both the primary value and the duplicate value for a given analyte are above detection limits and are greater than 5 times the target detection limit (TDL). The TDLs are pre-determined values for analytical methods and constituents with cleanup levels as listed in Table 2-1 of the SAP (DOE-RL 2006a). Table 2-1 includes nominal TDLs for identified methods based organic analyses. The nominal TDLs are also used in support of the RPD calculation for the methods based analytes. TDLs not included in Table 2-1 are based on the laboratory and/or methods used. Where direct evaluation of the attached sample data showed that a given analyte was not detected in the primary and/or duplicate sample, further evaluation of the RPD value was not performed. The RPD calculations use the following formula:

#### RPD = [|M-S|/((M+S)/2)]\*100

where, M = Main Sample Value S = S

S = Split (or duplicate) Sample Value

For quality assurance/quality control (QA/QC) duplicate RPD calculations, a value less than 30% indicates the data compare favorably. If the RPD is greater than 30%, further investigation regarding the usability of the data is performed. To assist in the identification of anomalous sample pairs, when an analyte is detected in the primary or duplicate/split sample, but was quantified at less than 5 times the TDL in one or both samples, an additional parameter is evaluated. In this case, if the difference between the primary and duplicate/split result exceeds a control limit of 2 times the TDL, further assessment regarding the usability of the data is performed. Additional discussion as necessary is provided in the data quality assessment section of the applicable RSVP.

59 60 61

43 44

#### **CALCULATION SHEET**

Rev. No. 0100D-CA-V0508 Date 07/01/13 Calc. No. Originator N. K. Schiffern VV Date 07/01/13 J. D. Skoglie Checked job No. 14655 Project 100-D Field Remediation Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations Sheet No. 3 of 24 Summary (continued) **QUALIFIER LIST** 3 B = estimate 5 C = detected in both the sample and the associated QC blank, sample concentration was </= 5X blank concentration. D = dilution 7 J = estimate N = recovery is outside control limits 10 M = sample duplicate precision not met. 11 P = aroclor flag, greater than 25% difference for detected concentrations between the two GC columns. 12 R = rejected 13 U = undetected 14 X (metals) = serial dilution in the analytical batch indicates that physical and chemical interferences are present. 15 X (organics) = More than 40% difference between columns, lower result reported (organics). 16 17 ACRONYM LIST 18 19 -- = not applicable 20 DE = direct exposure 21 EXC = excavation 22 EXT = extended 23 FS = focused sample 24 GW = groundwater 25 MTCA = Model Toxics Control Act NA = not applicable 27 PAH = polycyclic aromatic hudrocarbons 28 PQL = practical quantitation limit 29 Q = qualifier 30 QA/QC = quality assurance/quality control 31 RAG = remedial action goal 32 RDR/RAWP = remedial design report/remedial action work plan 33 RESRAD = RESidual RADioactivity (dose model) 34 RPD = relative percent difference 35 RSVP = remaining sites verification package 36 SAP = sampling and analysis plan 37 SPA = staging pile area 38 TDL = target detection limit 39 TPH = total petroleum hydrocarbons UCL = upper confidence limit WAC = Washington Administrative Code 42

#### **CALCULATION SHEET**

 Originator
 N. K. Schiffer
 γγ)
 Date
 07/08/13
 Calc. No.
 0100D-CA-V0508
 Rev. No.
 0

 Project
 100-D Field Remediation
 Job No.
 14655
 Checked
 J. D. Skoglie
 Date
 07/08/13

 Subject
 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations
 Steet No.
 4 of 24

Summary (continued)

Results:

The results presented in the tables that follow include the summary of the results of the 95% UCL calculations for the excavation, staging pile area, focused samples, the WAC 173-340-740(7)(e) 3-part test evaluation, and the RPD calculations, and are for use in risk analysis and the RSVP for these sites.

Results Summary - Excavation Samples 7 Maximum Focused Units Maximum Analyte 95% UCL Result 95% UCL Result 8 Result Result 1.1 mg/kg 0.87 Antimony 0.40 2.5 mg/kg 10 Arsenic 66.0 57.6 65.9 mg/kg 11 Barium 0.37 0.18 0.51 mg/kg 12 Beryllium 1.3 1.2 1.7 mg/kg 13 Boron 0.062 0.12 0.18 mg/kg 14 Cadmium 7.4 9.1 7.9 mg/kg 15 Chromium 11.6 ma/ka 10.0 7.6 16 Cobalt mg/kg 17 16.2 15.2 Copper 0.259 mg/kg 18 Hexavalent chromium 0.313 7.8 mg/kg 5.0 19 Lead 337 mg/kg 331 287 20 Manganese --0.034 0.15 mg/kg 0.12 21 Mercury 0.51 mg/kg 0.29 0.43 22 Molybdenum 10.3 10.8 mg/kg 23 13.2 Nickel 52.8 113 mg/kg 75.5 24 Vanadium 43.0 48.2 mg/kg 25 Zinc 50.3 15.5 ma/ka 48 9.3 26 Chloride 1.4 mg/kg 27 Fluoride 0.92 1.7 mg/kg 2.4 Nitrogen in Nitrate 1.2 mg/kg 29 Nitrogen in Nitrite and Nitrate 2.9 3890 13.0 mg/kg 29.0 30 Sulfate mg/kg 31 TPH - diesel 24 mg/kg 18.1 TPH - diesel EXT 32 2-Methylnaphthalene 0.12 mg/kg 33 Acenaphthene (Method 8310) 0.19 mg/kg 34 0.39 mg/kg Acenaphthene (Method 8270) 35 0.013 mg/kg 36 Acenaphthylene (Method 8310) Acenaphthylene (Method 8270) 0.12 mg/kg Anthracene (Method 8310) mg/kg 0.39 mg/kg 39 Anthracene (Method 8270) 1.0 0.018 0.011 mg/kg Benzo(a)anthracene (Method 8310) 0.66 40 0.036 0.022 mg/kg 1.8 41 Benzo(a)anthracene (Method 8270) 0.033 0.016 mg/kg 0.023 42 Benzo(a)pyrene (Method 8310) 0.032 mg/kg 0.047 Benzo(a)pyrene (Method 8270) 43 0.017 Benzo(b)fluoranthene (Method 8310) 0.033 mg/kg 0.50 44 Benzo(b)fluoranthene (Method 8270) 0.064 0.035 mg/kg 2.1 45 0.32 0.025 mg/kg Benzo(ghi)perylene (Method 8310) 46 Benzo(ghi)perylene (Method 8270) 0.62 0.023 mg/kg 0.012 0.18 0.0090 mg/kg 48 Benzo(k)fluoranthene (Method 8310) mg/kg Carbazole 0.57 0.028 0.018 mg/kg Chrysene (Method 8310) 0.56 0.045 0.029 mg/kg Chrysene (Method 8270) 1.8 0.092 mg/kg Dibenz(a,h)anthracene (Method 8310) 52 mg/kg Dibenz(a,h)anthracene (Method 8270) 0.16 53 mg/kg 0.34 54 Dibenzofuran 0.034 Fluoranthene (Method 8310) 0.046 mg/kg 55 Fluoranthene (Method 8270) 3.7 0.061 0.036mg/kg 56 0.25 mg/kg Fluorene (Method 8310) 57 Fluorene (Method 8270) 0.58 mg/kg 58 0.014 0.021 mg/kg Indeno(1,2,3-cd)pyrene (Method 8310) 0.30 mg/kg Indeno(1,2,3-cd)pyrene (Method 8270) 0.55 0.17 mg/kg Naphthalene (Method 8270) mg/kg Phenenthrene (Method 8310) 3.9 0.022 0.020 mg/kg Phenenthrene (Method 8270) 0.060 0.040 mg/kg 1.3 Pyrene (Method 8310) 0.066 0.037 mg/kg Pyrene (Method 8270) 65 0.0075 0.0086 0.0034 mg/kg 66 Aroclor-1260 0.00033 mg/kg Endosulfan sulfate 67 EXC SPA 3-Part Test Evaluation: 68 YES NO 95% UCL or maximum > Cleanup Limit? YES NO 69 YE\$ NO > 10% above Cleanup Limit? NO YES NO Any sample > 2x Cleanup Limit? NO YES

<sup>72 &</sup>lt;sup>a</sup> The 95% UCL result or maximum value, depending on data censorship, as described in the methodology section.

# Washington Closure Hanford

Originator N. K. Schiffern Date 07/01/13 Calc. No. 0100D-CA-V0508 Rev. No. Project 100-D Field Remediation Job No. 14655 Checked J. D. Skoglie Date 07/01/13 Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Ventication 95% UCL Calculations Sheet No. 5 of 24

#### 1 Summary (continued)

Results:

6

The results presented in the tables that follow include the summary of the results of the 95% UCL calculations for the excavation, staging pile area, focused samples, the WAC 173-340-740(7)(e) 3-part test evaluation, and the RPD calculations, and are for use in risk analysis and the RSVP for these sites.

| 9 Analyte                              | ifference Results |        | SF        | A      |
|----------------------------------------|-------------------|--------|-----------|--------|
| ·                                      | Duplicate         | Split  | Duplicate | Split  |
| 1 Aluminum                             | 1.0%              | 16.2%  | 9.3%      | 5.4%   |
| 2 Barium                               | 3.2%              | 12.7%  | 17.3%     | 1.5%   |
| 3 Calcium                              | 3.9%              | 15.1%  | 9.0%      | 0.0%   |
| 4 Chromium                             | 3.0%              | 18.5%  | 3.4%      | 8.3%   |
| 5 Copper                               | 0.7%              | 16.9%  | 4.2%      | 10.1%  |
| 6 Iron                                 | 0.6%              | 19.3%  | 2.0%      | 10.8%  |
| 7 Magnesium                            | 1.2%              | 20.6%  | 6.1%      | 5.1%   |
| 8 Manganese                            | 1.0%              | 17.7%  | 2.3%      | 1.1%   |
| 9 Sificon                              | 12.0%             | 38.0%  | 27.4%     | 165.4% |
| 0 Sodium                               | 4.0%              | -      |           | 1.4%   |
| 1 Vanadium                             | 2.9%              | 9.6%   | 6.1%      | 16.0%  |
| 2 Zinc                                 | 0.6%              | 12.8%  | 1.8%      | 2.9%   |
| 3 Acenaphthene (Method 8310)           | 62.1%             | 155.8% |           |        |
| 4 Anthracene (Method 8310)             |                   | 11.4%  |           |        |
| 5 Benzo(a)anthracene (Method 8310)     | 122.0%            | 27.0%  |           |        |
| 6 Benzo(a)pyrene (Method 8310)         | 138.5%            | 11.4%  |           |        |
| 7 Benzo(b)fluoranthene (Method 8310)   | 122.6%            | 64.2%  |           |        |
| 8 Benzo(ghi)perylene (Method 8310)     |                   | 45.4%  |           |        |
| 9 Benzo(k)fluoranthene (Method 8310)   |                   | 14.9%  |           |        |
| O Chrysene (Method 8310)               | 124.6%            | 11.9%  |           |        |
| 1 Fluoranthene (Method 8310)           | 133.3%            | 4.9%   |           |        |
| 2 Fluorene (Method 8310)               |                   | 21.7%  |           |        |
| 3 Indeno(1,2,3-cd)pyrene (Method 8310) |                   | 40.5%  |           |        |
| Phenanthrene (Method 8310)             | 128.8%            | 0.0%   |           |        |
| Pyrene (Method 8310)                   | 144.4%            | 35.4%  |           |        |

<sup>36</sup> aRPD listed where result produced, based on criteria. If RPD not required, no value is listed. The 37 significance of the reported RPD values, including values greater than 30% for duplicate analysis and 35  $38\ \%$  for split analysis, is addressed in the data quality assessment section of the RSVP.

43 44

NA

Because all values are below

required.

NA

Because all values are below

background (132 mg/kg) the background (1.51 mg/kg) the background (18.5 mg/kg) the background (15.7 mg/kg) the

WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is Not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not WAC 173-340 3-part test is not

NO

NO

NO

A detailed assessment will be

performed. The data set

meets the 3-part test criteria

when compared to the direct

exposure RAG.

Because all values are below

background (22.0 mg/kg) the

required.

| Project 1                         | Drd<br>I. K. Schiffern (V)<br>00-N Field Remediatio<br>00-D-77, 100-D-62, an |                        | aste Sites Cl | eanup \                                          | Verification 9                                   | 5% UCL Cald | -<br>culations                                   | <b>s</b> , | J                    | Date ob No.     | 07/0<br>146                                      |       |                                     |                    |                         |                                                                      | CA-V0508<br>Skoglie                              |                                                   |                                 |                                                                      | 0<br>7/01/13<br>of 24 | -<br>-<br>-                                        |                         |
|-----------------------------------|------------------------------------------------------------------------------|------------------------|---------------|--------------------------------------------------|--------------------------------------------------|-------------|--------------------------------------------------|------------|----------------------|-----------------|--------------------------------------------------|-------|-------------------------------------|--------------------|-------------------------|----------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------|----------------------------------------------------------------------|-----------------------|----------------------------------------------------|-------------------------|
| 100-D-77, 100-D-62, and 10        |                                                                              | Calculations           |               |                                                  |                                                  |             |                                                  |            |                      |                 |                                                  |       |                                     |                    |                         |                                                                      |                                                  |                                                   |                                 |                                                                      |                       |                                                    |                         |
| Verification Data -Excavat        |                                                                              |                        |               | rsenic                                           |                                                  |             | Barium                                           |            | B                    | erylliun        | <u> </u>                                         | C     | romiun                              | . 1                |                         | obalt                                                                | С                                                | opper                                             | 1                               | ead                                                                  | M                     | anganes                                            |                         |
| Sample                            | Sample                                                                       | Sample                 |               | Q                                                | PQL                                              | mg/kg       | Q                                                | PQL        | mg/kg                | Q               | PQL                                              | mg/kg | Q                                   | PQL                | mg/kg                   | Q PQL                                                                | mg/kg                                            | Q PQL                                             | mg/kg                           | Q PQL                                                                | mg/kg                 | Q                                                  | PQL                     |
| Area                              | Number<br>J1PW83                                                             | Date                   | mg/kg<br>3.6  | -                                                | 0.64                                             | 61.3        | -                                                | 0.074      | 0.27                 | -               | 0.032                                            | 13.0  | X                                   | 0.057              | 6.1                     | X 0.098                                                              | 14.1                                             | 0.21                                              | 3.9                             | X 0.26                                                               | 289                   | X                                                  | 0.098                   |
| EXC-3                             | J1PW93                                                                       | 9/18/2012<br>9/18/2012 | 3.5           |                                                  | 0.61                                             | 63.3        | 1                                                | 0.071      | 0.26                 |                 | 0.031                                            | 13.4  | Х                                   | 0.054              | 6.1                     | X 0.093                                                              | 14.0                                             | 0.20                                              | 4.0                             | X 0.25                                                               | 286                   | X                                                  | 0.093                   |
| Duplicate of J1PW83               | J1PW93                                                                       | 9/18/2012              | 3.6           | <del>                                     </del> | 0.62                                             | 65.4        | 1 1                                              | 0.071      | 0.34                 |                 | 0.031                                            | 11.1  | Х                                   | 0.054              | 7.9                     | X 0.094                                                              | 17.9                                             | 0.20                                              | 18.5                            | X 0.25                                                               | 330                   | X                                                  | 0.094                   |
| EXC-1<br>EXC-2                    | J1PW82                                                                       | 9/18/2012              | 2.2           | -                                                | 0.58                                             | 73.0        | +                                                | 0.067      | 0.27                 |                 | 0.029                                            | 8.3   | Х                                   | 0.051              | 7.8                     | X 0.088                                                              | 15.5                                             | 0.19                                              | 7.4                             | X 0.24                                                               | 305                   | X                                                  | 0.085                   |
| EXC-2                             | J1RJ77                                                                       | 3/15/2013              | 1.2           | +                                                | 0.62                                             | 46.8        | X                                                | 0.072      | 0.53                 | В               | 0.16                                             | 4.8   |                                     | 0.055              | 10.8                    | 0.47                                                                 | 14.0                                             | 1.0                                               | 2.2                             | B 1.3                                                                | 323                   | <del></del>                                        | 0.086                   |
| EXC-4                             | J1PW85                                                                       | 9/18/2012              | 3.1           |                                                  | 0.57                                             | 68.3        | <del>                                     </del> | 0.065      | 0.34                 | В               | 0.14                                             | 8.2   | X                                   | 0.050              | 9.6                     | X 0.43                                                               | 16.3                                             | 0.93                                              | 9.1                             | X 1.2                                                                | 321                   | X                                                  | 0.089                   |
| EXC-5                             | J1PW86                                                                       | 9/18/2012              | 2.6           |                                                  | 0.59                                             | 73.7        |                                                  | 0.068      | 0.33                 | В               | 0.15                                             | 8.5   | Х                                   | 0.052              | 9.5                     | X 0.45                                                               | 14.5                                             | 0.97                                              | 4.1                             | X 1.2                                                                | 320                   | X                                                  | 0.084                   |
|                                   | J1PW87                                                                       | 9/18/2012              | 2.3           | +                                                | 0.55                                             | 60.4        | 1 - 1                                            | 0.064      | 0.32                 | В               | 0.14                                             | 7.1   | Х                                   | 0.049              | 9.7                     | X 0.42                                                               | 15.7                                             | 0.91                                              | 3.3                             | X 1.1                                                                | 305                   | X                                                  |                         |
| EXC-7<br>EXC-8                    | J1PW87<br>J1PW88                                                             | 9/18/2012              | 1.9           | +                                                | 0.59                                             | 42.1        | <del>                                     </del> | 0.068      | 0.33                 | В               | 0.15                                             | 5.3   | Х                                   | 0.052              | 10.8                    | X 0.45                                                               | 15.2                                             | 0.97                                              | 3.3                             | X 1.2                                                                | 324                   | X                                                  | 0.090                   |
|                                   |                                                                              |                        | 2.3           | +                                                | 0.62                                             | 55.2        | 1 1                                              | 0.071      | 0.35                 | В               | 0.15                                             | 6.9   | Х                                   | 0.054              | 10.3                    | X 0.47                                                               | 16.2                                             | 1.0                                               | 4.6                             | X 1.3                                                                | 318                   | X                                                  | 0.093                   |
| EXC-9                             | J1PW89                                                                       | 9/18/2012              | 2.5           | -                                                | 0.63                                             | 56.7        | +-+                                              | 0.072      | 0.37                 | В               | 0.16                                             | 6.2   | Х                                   | 0.055              | 10.8                    | X 0.48                                                               | 16.8                                             | 1.0                                               | 4.6                             | X 1.3                                                                | 388                   | X                                                  | 0.095                   |
| EXC-10                            | J1PW90                                                                       | 9/18/2012              |               | -                                                | 0.66                                             | 53.3        | + $ +$                                           | 0.072      | 0.32                 | В               | 0.16                                             | 5.9   | X                                   | 0.058              | 10.6                    | X 0.50                                                               | 14.9                                             | 1.1                                               | 3.8                             | X 1.3                                                                | 322                   | X                                                  | 0.10                    |
| EXC-11                            | J1PW91                                                                       | 9/18/2012<br>9/18/2012 | 2.2           | -                                                | 0.57                                             | 62.8        |                                                  | 0.065      | 0.32                 |                 | 0.028                                            | 6.8   | X                                   | 0.050              | 6.9                     | X 0.086                                                              | 16.2                                             | 0.19                                              | 3.9                             | X 0.23                                                               | 271                   | X                                                  | 0.086                   |
| EXC-12                            | J1PW92                                                                       | 1 9/10/2012 1          | <u> </u>      | 1                                                | 0.0.                                             | - 02.0      |                                                  |            |                      |                 |                                                  |       |                                     |                    |                         |                                                                      |                                                  |                                                   |                                 |                                                                      | <del>, - ,</del>      | i a mana                                           |                         |
| Statistical Computation Ir Sample | Sample                                                                       | Sample                 |               | Arsenio                                          | -                                                |             | Barium                                           |            | В                    | erylliur        | n                                                | С     | hromiun                             | n                  | - (                     | Cobalt                                                               | 1                                                | copper                                            | i i                             | Lead                                                                 | l N                   | iangane:<br>mg/kg                                  |                         |
| Sample Area                       | Number                                                                       | Date                   |               | mg/kg                                            |                                                  | ı           | mg/kg                                            |            |                      | mg/kg           |                                                  |       | mg/kg                               |                    |                         | ng/kg                                                                |                                                  | mg/kg                                             |                                 | ng/kg                                                                | 288                   | mg/kg                                              |                         |
| EXC-3                             | J1PW83/J1PW93                                                                | 9/18/2012              | 3.6           | <br>                                             |                                                  | 62.3        |                                                  |            | 0.27                 | T               |                                                  | 13.2  |                                     |                    | 6.1                     |                                                                      | 14.1                                             |                                                   | 4.0                             |                                                                      |                       |                                                    | <del> </del>            |
| EXC-1                             | J1PW81                                                                       | 9/18/2012              | 3.6           |                                                  |                                                  | 65.4        | 1 -                                              |            | 0.34                 |                 |                                                  | 11.1  |                                     |                    | 7.9                     |                                                                      | 17.9                                             |                                                   | 18.5                            |                                                                      | 330                   |                                                    |                         |
| EXC-2                             | J1PW82                                                                       | 9/18/2012              | 2.2           | 1                                                |                                                  | 73.0        |                                                  |            | 0.27                 |                 |                                                  | 8.3   |                                     |                    | 7.8                     |                                                                      | 15.5                                             |                                                   | 7.4                             |                                                                      | 305<br>323            |                                                    | +                       |
| EXC-4                             | J1RJ77                                                                       | 3/15/2013              | 1.2           |                                                  |                                                  | 46.8        |                                                  |            | 0.53                 | 1               | _                                                | 4.8   |                                     |                    | 10.8                    |                                                                      | 14.0                                             |                                                   | 2.2                             |                                                                      | 323                   |                                                    | +                       |
| EXC-5                             | J1PW85                                                                       | 9/18/2012              | 3.1           | <b>†</b>                                         |                                                  | 68.3        |                                                  |            | 0.34                 |                 |                                                  | 8.2   |                                     |                    | 9.6                     |                                                                      | 16.3                                             |                                                   | 9.1                             |                                                                      | 321                   |                                                    | +                       |
| EXC-6                             | J1PW86                                                                       | 9/18/2012              | 2.6           | 1                                                |                                                  | 73.7        | 1                                                | _          | 0.33                 |                 |                                                  | 8.5   |                                     |                    | 9.5                     |                                                                      | 14.5                                             |                                                   | 4.1                             |                                                                      | 305                   | -                                                  | <del> </del>            |
| EXC-7                             | J1PW87                                                                       | 9/18/2012              | 2.3           |                                                  |                                                  | 60.4        |                                                  |            | 0.32                 |                 |                                                  | 7.1   | <u> </u>                            |                    | 9.7                     |                                                                      | 15.7                                             |                                                   | 3.3                             | <u> </u>                                                             | 324                   | +                                                  | -                       |
| EXC-8                             | J1PW88                                                                       | 9/18/2012              | 1.9           | 1                                                |                                                  | 42.1        |                                                  |            | 0.33                 |                 |                                                  | 5.3   | <u> </u>                            |                    | 10.8                    |                                                                      | 15.2                                             | <del>                                     </del>  | 3.3                             | <del> </del>                                                         | 318                   |                                                    | +                       |
| EXC-9                             | J1PW89                                                                       | 9/18/2012              | 2.3           |                                                  |                                                  | 55.2        |                                                  |            | 0.35                 |                 |                                                  | 6.9   |                                     |                    | 10.3                    |                                                                      | 16.2                                             |                                                   | 4.6                             | <del>                                     </del>                     | 388                   | +                                                  |                         |
| EXC-10                            | J1PW90                                                                       | 9/18/2012              | 2.5           | <del>                                     </del> |                                                  | 56.7        |                                                  |            | 0.37                 |                 |                                                  | 6.2   |                                     |                    | 10.8                    |                                                                      | 16.8                                             |                                                   | 4.6                             | <del> </del>                                                         | 322                   | +                                                  | +                       |
| EXC-11                            | J1PW91                                                                       | 9/18/2012              | 1.9           | 1                                                |                                                  | 53.3        |                                                  |            | 0.32                 |                 |                                                  | 5.9   |                                     |                    | 10.6                    |                                                                      | 14.9                                             |                                                   | 3.8                             | <del></del>                                                          | 271                   |                                                    | +                       |
| EXC-12                            | J1PW92                                                                       | 9/18/2012              | 2.2           |                                                  |                                                  | 62.8        | 1                                                |            | 0.26                 |                 |                                                  | _ 6.8 | <u> </u>                            |                    | 6.9                     |                                                                      | 16.2                                             | <u> </u>                                          | 3.9                             |                                                                      | 2/1                   |                                                    |                         |
| Statistical Computations          | <u> </u>                                                                     |                        |               |                                                  |                                                  |             |                                                  |            |                      |                 |                                                  |       |                                     |                    |                         |                                                                      |                                                  |                                                   |                                 | Lead                                                                 |                       | Mangane                                            | se                      |
| Clausica. Company                 |                                                                              |                        |               | Arsenio                                          | 3                                                |             | Barium                                           |            | <u> </u>             | <u>Berylliu</u> | m                                                |       | hromiu                              | m                  | <u> </u>                | Cobait                                                               | <del>                                     </del> | Copper                                            |                                 |                                                                      | <del></del>           |                                                    |                         |
| 5                                 | 95                                                                           | % UCL based on         | MTCA          |                                                  | ≥ 10), use<br>Inormal<br>on.                     | 1           | a set (n a<br>Stat logr<br>istribution           | normal     | lognori<br>distribut | mal and         | (n ≥ 10),<br>I normal<br>cted, use<br>c.         | MTCA  | a set (n<br>Stat logr<br>istributio |                    | lognorm<br>distribution | ta set (n ≥ 10),<br>nal and normal<br>on rejected, use<br>statistic. | MTCAS                                            | set (n ≥ 10), us<br>Stat lognormal<br>stribution. | e lognorm<br>distribution<br>z- | ta set (n ≥ 10),<br>nal and normal<br>on rejected, use<br>statistic. | logno<br>distribu     | data set<br>rmal and<br>ition reject<br>z-statisti | I normal<br>cted, use   |
| 7                                 |                                                                              | NI.                    | 12            | T                                                |                                                  | 12          | 1                                                | 1          | 12                   |                 |                                                  | 12    | 1                                   |                    | 12                      |                                                                      | 12                                               |                                                   | 12                              |                                                                      | 12                    |                                                    |                         |
| <u> </u>                          |                                                                              | < Detection limit      | 0%            | +-                                               | <del>                                     </del> | 0%          | + -                                              | 1          | 0%                   |                 |                                                  | 0%    |                                     |                    | 0%                      |                                                                      | 0%                                               |                                                   | 0%                              |                                                                      | 0%                    |                                                    |                         |
| <u>-</u>                          |                                                                              | Mean                   | 2.4           | +                                                | <del>                                     </del> | 60.0        | +                                                | -          | 0.34                 |                 |                                                  | 7.7   |                                     |                    | 9.2                     |                                                                      | 15.6                                             |                                                   | 5.7                             | <u> </u>                                                             | 318                   |                                                    |                         |
| <u> </u>                          |                                                                              | tandard deviation      | 0.70          | +                                                | + -                                              | 9.7         | +-                                               | <b>†</b>   | 0.071                |                 |                                                  | 2.4   | 1 -                                 |                    | 1.6                     |                                                                      | 1.2                                              |                                                   | 4.4                             |                                                                      | 28.0                  |                                                    | +                       |
| ·                                 |                                                                              | 5% UCL on mean         | 2.9           | +-                                               | <del>                                     </del> | 66.0        | +-                                               |            | 0.37                 | 1               |                                                  | 9.1   |                                     |                    | 10.0                    |                                                                      | 16.2                                             |                                                   | 7.8                             |                                                                      | 331                   |                                                    |                         |
| <u> </u>                          |                                                                              | Maximum value          | 3.6           | +-                                               | +                                                | 73.7        | -                                                | -          | 0.53                 | +               | <del>                                     </del> | 13.4  | T -                                 | $\vdash$           | 10.8                    |                                                                      | 17.9                                             |                                                   | 18.5                            |                                                                      | 388                   |                                                    |                         |
| Most Stringent Cleanu             | p Limit for nonradion                                                        |                        | 20            |                                                  | GW & River                                       | 200         | GW                                               | Protection | 1.51                 |                 | V & River rotection                              | 18.5  |                                     | / & River otection | 15.7                    | GW Protection                                                        | 22.0                                             | River Protecti                                    | on 10.2                         | GW & River<br>Protection                                             | 512                   |                                                    | W & River<br>Protection |

Because all values are below

not required.

49 Qualifiers are defined on page 3.

**WAC 173-340 3-PART TEST** 

WAC 173-340 Compliance?

(mg/kg)

NA

NA

Because all values are below

background (6.5 mg/kg) the

required.

NA

NA

Because all values are below

required.

95% UCL > Cleanup Limit?

> 10% above Cleanup Limit? Any sample > 2X Cleanup Limit?

NA

Because all values are below

background (512 mg/kg) the

WAC 173-340 3-part test is not

required.

| Washington Closure Hanford | 0.0                                                                        |
|----------------------------|----------------------------------------------------------------------------|
| Originator N. K. Schiffern | (1)                                                                        |
| Project 100-N Field Ren    | mediation                                                                  |
| Subject 100-D-77, 100-6    | D-62, and 100-D-83-1 Waste Sites Cleanup Verification 05% LICL Coloulation |

Date 07/01/13
Job No. 14655

Calc. No. 0100D-CA-V0508 Checked J. D. Skoglie

 Rev. No.
 0

 Date
 07/01/13

 Sheet No.
 7 of 24

1 100-D-77, 100-D-62, and 100-D-83:1 Statistical Calculations 2 Verification Data -Excavation (EXC)

| Sample<br>Area     | Sample<br>Number | Sample    |        | Mercury      |        | Mo    | lybdenu  | m    |       | Nickel              |      | L v   | anadiun | , İ   |       | Zinc                                             | ·    | Nitrog | jen in Ni | itrate | Nitroger | in Nitri<br>Nitrate | ite and |          | Sulfate      |      |
|--------------------|------------------|-----------|--------|--------------|--------|-------|----------|------|-------|---------------------|------|-------|---------|-------|-------|--------------------------------------------------|------|--------|-----------|--------|----------|---------------------|---------|----------|--------------|------|
| EXC-3              |                  | Date      | mg/kg  | LQ_          | PQL    | mg/kg | Q        | PQL  | mg/kg | Q                   | PQL  | ma/ka | Q       | PQL   | ma/ka | Q                                                | PQL  | mg/kg  | QI        | PQL    |          | 1 A                 |         |          |              |      |
|                    | J1PW83           | 9/18/2012 | 0.0074 | В            | 0.0051 | 0.25  | В        | 0.25 | 12.5  | X                   | 0.12 | 40.4  |         | 0.092 | 35.0  | <del>  ~  </del>                                 | 0.39 |        | +         |        | mg/kg    | <u> </u>            | PQL     | mg/kg    | Q            | PC   |
| uplicate of J1PW83 | J1PW93           | 9/18/2012 | 0.0068 | В            | 0.0052 | 0.24  | U        | 0.24 | 12.7  | v                   | 0.11 | 41.6  | 1       |       |       |                                                  |      | 0.67   | BJ        | 0.31   | 1.2      | N                   | 0.30    | <u> </u> | U            | 1    |
| EXC-1              | J1PW81           | 9/18/2012 | 0.14   |              | 0.0056 | 0.60  | В        | 0.24 | 13.1  | ++                  |      |       |         | 0.088 | 34.8  | X                                                | 0.37 | 0.57   | BJ        | 0.29   | 1.3      |                     | 0.30    | 1.6      | U            | 1    |
| EXC-2              | J1PW82           | 9/18/2012 | 0.075  | <del> </del> | 0.0057 | 0.54  | -        | 0.23 | +     | + 0                 | 0.12 | 54.9  |         | 0.088 | 65.7  | X                                                | 0.37 | 0.77   | BJ        | 0.31   | 1.6      | N                   | 0.31    | 1.7      | U            | 1    |
| EXC-4              | J1RJ77           | 3/15/2013 | 0.013  | + -          | 0.0056 | 0.38  |          |      | 11.9  | _ X                 | 0.11 | 65.0  |         | 0.083 | 48.8  | X                                                | 0.35 | 2.6    | BJ        | 0.31   | 3.3      |                     | 0.30    | 81.7     |              | 1.   |
| EXC-5              | J1PW85           | 9/18/2012 | 0.092  | + -          |        |       | B        | 0.25 | 10.0  |                     | 0.12 | 75.3  |         | 0.44  | 47.4  | X                                                | 0.38 | 0.71   | В         | 0.32   | 0.30     | U                   | 0.30    | 9.7      |              | 1.   |
| EXC-6              | J1PW86           | 9/18/2012 | 0.032  |              | 0.0060 | 0.48  | В        | 0.22 | 12.2  | X                   | 0.11 | 71.8  |         | 0.40  | 53.5  | X                                                | 0.34 | 1.0    | BJ        | 0.31   | 7.8      |                     | 0.31    | 34.3     | +            | 1.   |
| EXC-7              | J1PW87           |           |        | +            | 0.0051 | 0.31  | В        | 0.23 | 14.7  | X                   | 0.11 | 71.6  |         | 0.42  | 42.9  | X                                                | 0.36 | 0.95   | BJ        | 0.30   | 14       | $\vdash$            | 0.32    | 51.5     | <del> </del> | 1.   |
| EXC-8              |                  | 9/18/2012 | 0.0055 | В            | 0.0050 | 0.29  | В        | 0.22 | 12.5  | X                   | 0.10 | 71.2  |         | 0.40  | 41.5  | X                                                | 0.33 | 0.84   | BJ        | 0.32   | 1.7      | +                   | 0.32    |          | ┼            | 1.   |
|                    | J1PW88           | 9/18/2012 | 0.0062 | В            | 0.0057 | 0.33  | В        | 0.23 | 11.0  | X                   | 0.11 | 84.8  |         | 0.42  | 44.6  | Y                                                | 0.36 | 0.49   | BJ        | 0.32   | 1.3      | 1 1                 |         | 9.9      | <del></del>  | 1-1- |
| EXC-9              | J1PW89           | 9/18/2012 | 0.027  |              | 0.0060 | 0.26  | В        | 0.24 | 12.1  | X                   | 0.11 | 73.9  |         | 0.44  | 44.7  | <del>                                     </del> | 0.37 |        | +         |        | 1.0      |                     | 0.31    | 1.7      | U            | 1.   |
| EXC-10             | J1PW90           | 9/18/2012 | 0.0089 | В            | 0.0058 | 0.27  | В        | 0.25 | 14.5  | X                   | 0.12 | 75.0  | -       | 0.45  |       | <del>  0  </del>                                 |      | 0.58   | BJ        | 0.30   | · 1.1    |                     | 0.30    | 1.6      | U            | 1.   |
| EXC-11             | J1PW91           | 9/18/2012 | 0.0064 | П            | 0.0064 | 0.31  | <u> </u> | 0.26 | 13.5  | $\frac{\hat{x}}{x}$ |      |       |         |       | 45.2  | <u>X</u>                                         | 0.38 | 0.57   | BJ        | 0.30   | 1.2      |                     | 0.31    | 1.6      | U            | 1.   |
| EXC-12             | J1PW92           | 9/18/2012 | 0.020  | 1 -          | 0.0055 | 0.28  | B        |      | +     | <b>⊢</b> ^ ↓        | 0.12 | 85.4  |         | 0.47  | 45.3  | X                                                | 0.40 | 0.30   | UR        | 0.30   | 1.2      |                     | 0.31    | 1.7      | U            | 1.   |
|                    |                  | 3.3.2012  | 0.020  |              | 0.0055 | U.28  | _ B      | 0.22 | 10.3  | X _ j               | 0.11 | 58.0  |         | 0.081 | 39.6  | X                                                | 0.34 | 1.7    | BJ        | 0.31   | 2.6      | 1                   | 0.30    | 8.1      | <del></del>  | 1    |

| 19 <u>,</u> S | tatistical Computation  | Input Data    |            |         |            |             | •        |       |                     |                         | <del> </del> |
|---------------|-------------------------|---------------|------------|---------|------------|-------------|----------|-------|---------------------|-------------------------|--------------|
| 20            | Sample                  | Sample        | Sample     | Mercury | Molybdenum | Nickel      | Vanadium | Zinc  | Nitrogen in Nitrate | Nitrogen in Nitrite and | Sulfate      |
| 21            | Area                    | Number        | Date       | mg/kg   | mg/kg      | mg/kg       | ma/ka    |       | 1                   | Nitrate                 | Sunate       |
| 22            | EXC-3                   | J1PW83/J1PW93 | 9/18/2012  | 0.0071  | 0.19       | 12.6        | mg/kg    | mg/kg | mg/kg               | mg/kg                   | mg/kg        |
| 23            | EXC-1                   | J1PW81        | 9/18/2012  | 0.14    | 0.60       | 13.1        | 41.0     | 34.9  | 0.62                | 1.3                     | 0.83         |
| 24            | EXC-2                   | J1PW82        | 9/18/2012  | 0.075   | 0.54       | <del></del> | 54.9     | 65.7  | 0.77                | 1.6                     | 0.85         |
| 25            | EXC-4                   | J1RJ77        | 3/15/2013  | 0.013   |            | 11.9        | 65.0     | 48.8  | 2.6                 | 3.3                     | 81.7         |
| 26            | EXC-5                   | J1PW85        | 9/18/2012  | 0.013   | 0.38       | 10.0        | 75.3     | 47.4  | 0.71                | 0.15                    | 9.7          |
| 27            | EXC-6                   | J1PW86        | 9/18/2012  |         | 0.48       | 12.2        | 71.8     | 53.5  | 1.0                 | 7.8                     | 34.3         |
| 28            | EXC-7                   |               |            | 0.022   | 0.31       | 14.7        | 71.6     | 42.9  | 0.95                | 1.4                     | 51.5         |
| 29            | EXC-8                   | J1PW87        | 9/18/2012  | 0.0055  | 0.29       | 12.5        | 71.2     | 41.5  | 0.84                | +                       |              |
| 29            |                         | J1PW88        | 9/18/2012  | 0.0062  | 0.33       | 11.0        | 84.8     | 44.6  |                     | 1.3                     | 9.9          |
| 30            | EXC-9                   | J1PW89        | 9/18/2012  | 0.027   | 0.26       | 12.1        | 73.9     |       | 0.49                | 1.0                     | 0.85         |
| 31            | EXC-10                  | J1PW90        | 9/18/2012  | 0.0089  | 0.27       | 14.5        |          | 44.7  | 0.58                | 1.1                     | 0.80         |
| 32            | EXC-11                  | J1PW91        | 9/18/2012  | 0.0032  | 0.31       |             | 75.0     | 45.2  | 0.57                | 1.2                     | 0.80         |
| 33            | EXC-12                  | J1PW92        | 9/18/2012  | 0.020   | 0.31       | 13.5        | 85.4     | 45.3  | 0.15                | 1.2                     | 0.85         |
| 34 St         | tatistical Computations |               | 5 5. EU 12 | 0.020   | 0.20       | 10.3        | 58.0     | 39.6  | 1.7                 | 2.6                     | 8.1          |

| 34       | itatistical Computations                                                    | 0.020                                         |                                          |                | 0.28                                     |                                       |           | 10.3                                             |                                     |                           | 58.0                                    |                        | Ĺ                           | 39.6                     |                                                                               | 1.7                    | $\top$        | 1                                                 | 2.6                     | <del>                                     </del>                       | 8.1                      | + + -                                                                       |
|----------|-----------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|----------------|------------------------------------------|---------------------------------------|-----------|--------------------------------------------------|-------------------------------------|---------------------------|-----------------------------------------|------------------------|-----------------------------|--------------------------|-------------------------------------------------------------------------------|------------------------|---------------|---------------------------------------------------|-------------------------|------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------|
| 35       |                                                                             |                                               |                                          |                |                                          | _                                     |           |                                                  |                                     |                           | <del></del>                             |                        |                             |                          |                                                                               |                        |               |                                                   |                         |                                                                        | <u> </u>                 | <del></del>                                                                 |
| 3        |                                                                             | ^                                             | Mercury                                  |                | Mo                                       | lybdenu<br>                           | m<br>     |                                                  | Nickel                              |                           | \ <u>'</u>                              | /anadiun               | n<br>                       |                          | Zinc                                                                          | Nitro                  | gen in I      | Nitrate                                           |                         | n in Nitrite and<br>Nitrate                                            |                          | Sulfate                                                                     |
| 36       | 95% UCL based on                                                            | dis                                           | set (n ≥ 1<br>Stat lognor<br>stribution. |                | di                                       | a set (n ≥<br>Stat logn<br>stribution | ormal     | MTCA                                             | a set (n<br>Stat logr<br>stribution |                           | Large dat                               | a set (n a<br>normal d | ≥ 10), use<br>distribution. | MTCA                     | a set (n ≥ 10), use<br>Stat lognormal<br>stribution.                          | lognor<br>distribut    | mal and       | (n ≥ 10),<br>i normal<br>cted, use<br>c.          | lognorn<br>distribution | ata set (n ≥ 10),<br>nal and normal<br>on rejected, use<br>estatistic. | lognorr<br>distributi    | ata set (n ≥ 10),<br>nal and normal<br>on rejected, use<br>estatistic.      |
| 38       | N                                                                           | 12                                            | $\perp$                                  |                | 12                                       |                                       |           | 12                                               |                                     |                           | 12                                      |                        |                             | 12                       |                                                                               | 12                     | $\overline{}$ |                                                   | 12                      |                                                                        | <del>  _</del>           |                                                                             |
| 30       | % < Detection limit                                                         | 8%                                            | $\perp$                                  |                | 0%                                       |                                       | -         | 0%                                               |                                     |                           | 0%                                      | 1                      | <del> </del>                | 0%                       | <del>                                     </del>                              | 8%                     |               | <del> </del>                                      |                         | <del></del>                                                            | 12                       |                                                                             |
| 33       | Mean                                                                        | 0.035                                         |                                          |                | 0.35                                     |                                       |           | 12.4                                             |                                     |                           | 69.0                                    | †                      |                             | 46.2                     | <del>                                     </del>                              | 0.92                   | +             | <del></del>                                       | 8%                      |                                                                        | 50%                      |                                                                             |
| 401      | Standard deviation                                                          | 0.044                                         |                                          |                | 0.12                                     |                                       |           | 1.5                                              |                                     |                           | 12.6                                    | -                      |                             | 7.7                      | <del>                                     </del>                              |                        |               |                                                   | 2.0                     |                                                                        | 16.7                     |                                                                             |
| 41       | 95% UCL on mean                                                             | 0.12                                          |                                          |                | 0.43                                     |                                       | -         | 13.2                                             |                                     | _                         | 75.5                                    | <del> </del>           | -                           | 50.3                     | + +                                                                           | 0.65                   | +-            | <del>                                      </del> | 2.0                     |                                                                        | 26.0                     |                                                                             |
| 42       | Maximum value                                                               | 0.14                                          |                                          |                | 0.60                                     |                                       |           | 14.7                                             | 1 1                                 | _                         | 85.4                                    | <del> </del>           |                             | 65.7                     | <del>  </del>                                                                 | 1.2                    |               |                                                   | 2.9                     |                                                                        | 29.0                     |                                                                             |
| 43       | Most Stringent Cleanup Limit for nonradionuclide and RAG<br>type<br>(mg/kg) | 0.33                                          |                                          | & River ection | 8                                        | GW P                                  | rotection | 19.1                                             | GW F                                | Protection                | 85.1                                    | GW F                   | rotection                   | 67.8                     | River Protection                                                              | 1000                   | Rive          | er Protection                                     | 7.8<br>1000             | River Protection                                                       | 81.7<br>25000            | GW Protection                                                               |
| 44       | WAC 173-340 3-PART TEST                                                     |                                               |                                          | _              |                                          |                                       |           | <del>                                     </del> |                                     |                           | <u> </u>                                |                        |                             |                          |                                                                               |                        |               |                                                   |                         |                                                                        | ļ                        | 1                                                                           |
| 45<br>46 | 95% UCL > Cleanup Limit?<br>> 10% above Cleanup Limit?                      |                                               | NA NA                                    |                |                                          | NO                                    |           |                                                  | NA                                  |                           |                                         | NO                     |                             |                          | NA                                                                            |                        | NA.           |                                                   |                         |                                                                        |                          | NA                                                                          |
| 47       | Any sample > 2X Cleanup Limit?                                              |                                               |                                          |                |                                          | NO                                    |           |                                                  | _NA                                 |                           | L                                       | NO                     |                             |                          | NA                                                                            |                        | NA            |                                                   | <b></b> -               | NA                                                                     |                          | NA NA                                                                       |
|          | 7 Any sample > 2A Cleanup Limit?                                            |                                               | NA                                       |                |                                          | NO                                    |           |                                                  | <u>NA</u>                           |                           |                                         | NO                     |                             |                          | NA                                                                            |                        | NA            | _                                                 |                         | NA NA                                                                  | <del></del>              | NA NA                                                                       |
| 48       |                                                                             | Because all<br>background<br>WAC 173-34<br>re | (0.33 mg                                 | /kg) the       | The data se<br>test criteria<br>the most | when cor                              | mpared to | Because al<br>background<br>WAC 173-<br>not      | d (19.1 n                           | ng/kg) the<br>art test is | The data so<br>test criteria<br>the mos | when co                | mpared to                   | background<br>WAC 173-34 | I values are below<br>d (67.8 mg/kg) the<br>40 3-part test is not<br>equired. | backgroun<br>WAC 173-3 | li values     | mg/kg) the<br>rt test is not                      | background<br>WAC 173-  | values are below<br>(11.8 mg/kg) the                                   | background<br>WAC 173-34 | values are below<br>d (237 mg/kg) the<br>iii 3-part test is not<br>equired. |
| 49 C     | ualifiers are defined on page 3.                                            |                                               |                                          |                |                                          |                                       |           | <u> </u>                                         |                                     |                           | L                                       |                        |                             |                          |                                                                               |                        |               |                                                   | <u> </u>                |                                                                        |                          |                                                                             |

Remaining Sites Verification Package for the 100-D-62, 183-DR Head House Septic Tank; 100-D-77, 183-DR Water Treatment Facility; and 100-D-83:1, 183-DR Acid Addition Pipelines Waste Sites

Date 07/01/13 Job No. 14655

Calc. No. 0100D-CA-V0508

Date 07/01/13 8 of 24 Sheet No.

Washington Closure Hanford
Originator N. K. Schiffern
Project 100-D Field Remediation
Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations

# 1 100-D-77, 100-D-62, and 100-D-83:1 Statistical Calculations

| 2  | Verification Data -Excava | tion (EXC) |           |       |          |     |       |        |      |
|----|---------------------------|------------|-----------|-------|----------|-----|-------|--------|------|
| 3  | Sample                    | Sample     | Sample    | TPI   | 1 - Dies | el  | TPH - | Diesel | EXT  |
| 4  | Area                      | Number     | Date      | ug/kg | Q        | PQL | ug/kg | Q      | PQL  |
| 5  | EXC-3                     | J1PW83     | 9/18/2012 | 24000 |          | 630 | 32000 |        | 920  |
| 6  | Duplicate of J1PW83       | J1PW93     | 9/18/2012 | 3000  | J        | 660 | 3900  |        | 960  |
| 7  | EXC-1                     | J1PW81     | 9/18/2012 | 1800  | J        | 680 | 6300  |        | 990  |
| 8  | EXC-2                     | J1PW82     | 9/18/2012 | 1900  | J        | 680 | 4600  |        | 1000 |
| 9  | EXC-4                     | J1RJ77     | 3/15/2013 | 4100  |          | 680 | 5400  |        | 1000 |
| 10 | EXC-5                     | J1PW85     | 9/18/2012 | 5300  |          | 670 | 16000 |        | 980  |
| 11 | EXC-6                     | J1PW86     | 9/18/2012 | 2200  | J        | 650 | 2900  | J      | 960  |
| 12 | EXC-7                     | J1PW87     | 9/18/2012 | 1600  | J        | 670 | 2200  | J      | 990  |
| 13 | EXC-8                     | J1PW88     | 9/18/2012 | 770   | J        | 690 | 1000  | U      | 1000 |
| 14 | EXC-9                     | J1PW89     | 9/18/2012 | 1100  | J        | 670 | 1200  | J      | 990  |
| 15 | EXC-10                    | J1PW90     | 9/18/2012 | 670   | U        | 670 | 990   | U      | 990  |
| 16 | EXC-11                    | J1PW91     | 9/18/2012 | 1000  | J        | 630 | 1100  | J      | 920  |
| 17 | EXC-12                    | J1PW92     | 9/18/2012 | 660   | U        | 660 | 2300  | J      | 970  |

19 Statistical Computation Input Data

|        | Sample | Sample        | Sample    | TPH - Diesel | TPH - Diesel EXT |
|--------|--------|---------------|-----------|--------------|------------------|
|        | Area   | Number        | Date      | ug/kg        | ug/kg            |
| 2      | EXC-3  | J1PW83/J1PW93 | 9/18/2012 | 13500        | 17950            |
|        | EXC-1  | J1PW81        | 9/18/2012 | 1800         | 6300             |
|        | EXC-2  | J1PW82        | 9/18/2012 | 1900         | 4600             |
|        | EXC-4  | J1RJ77        | 3/15/2013 | 4100         | 5400             |
|        | EXC-5  | J1PW85        | 9/18/2012 | 5300         | 16000            |
|        | EXC-6  | J1PW86        | 9/18/2012 | 2200         | 2900             |
|        | EXC-7  | J1PW87        | 9/18/2012 | 1600         | 2200             |
|        | EXC-8  | J1PW88        | 9/18/2012 | 770          | 500              |
| $\Box$ | EXC-9  | J1PW89        | 9/18/2012 | 1100         | 1200             |
| $\Box$ | EXC-10 | J1PW90        | 9/18/2012 | 335          | 495              |
| 2      | EXC-11 | J1PW91        | 9/18/2012 | 1000         | 1100             |
| ₃厂     | EXC-12 | J1PW92        | 9/18/2012 | 330          | 2300             |

| 34 | Statistical Computations                                              |                                          | -        |                     |                                             |        |                    |
|----|-----------------------------------------------------------------------|------------------------------------------|----------|---------------------|---------------------------------------------|--------|--------------------|
| 35 |                                                                       | TPI                                      | l - Die: | sel                 | TPH -                                       | Diesel | EXT                |
| 36 | 95% UCL based on                                                      | Large data<br>MTCAS<br>dis               |          | normal              | Large data<br>MTCAS<br>dist                 | •      | normal             |
| 37 | N                                                                     | 12                                       |          |                     | 12                                          |        |                    |
| 38 | % < Detection limit                                                   | 17%                                      |          |                     | 17%                                         |        |                    |
| 39 | Mean                                                                  | 2828                                     |          |                     | 5079                                        |        |                    |
| 40 | Standard deviation                                                    | 3674                                     |          |                     | 5880                                        |        |                    |
| 41 | 95% UCL on mean                                                       | 7899                                     | ĺ        |                     | 18110                                       |        |                    |
| 42 | Maximum value                                                         | 24000                                    | Ļ        |                     | 32000                                       |        |                    |
| 43 | Most Stringent Cleanup Limit for nonradionuclide and RAG type (ug/kg) | 200000                                   |          | W & River rotection | 200000                                      | _      | V & River otection |
| 44 | WAC 173-340 3-PART TEST                                               |                                          |          |                     |                                             |        |                    |
| 45 | 95% UCL > Cleanup Limit?                                              |                                          | NO       |                     | _                                           | NO_    |                    |
| 46 | > 10% above Cleanup Limit?                                            |                                          | NO       |                     |                                             | NO     |                    |
| 47 | Any sample > 2X Cleanup Limit?                                        |                                          | NO       |                     |                                             | NO     |                    |
| 48 | WAC 173-340 Compliance?                                               | The data se<br>test criteria<br>the most | when c   | ompared to          | The data set<br>test criteria v<br>the most | vhen c | ompared to         |

Washington Closure Hanford Date Calc. No. Project 100-D Field Remediation J. D. Skoglie 07/01/13 14655 Checked Subject 100-D-77, 100-D-62, and 100-D-83;1 Waste Sites Cleanup Verification 95% UCL Calculations 9 of 24 1 100-D-77, 100-D-62, and 100-D-83:1 Maximum Calculations 2 Verification Data - Excavation (EXC) Acenaphthylene (Method Antimony Chloride Fluoride Acenaphthene (Method 8310) Anthracene (Method 8310) Sample Boron Cadmium Sample Q PQL Number Q PQL Q PQL mg/kg Q PQL PQL PQL ug/kg Q PQL mg/kg mg/kg Q mg/kg mg/kg 9/18/2012 BJ 0.96 0.040 0.80 0.80 NX 100 0.91 0.038 Duplicate of J1PW83 9/18/2012 0.35 UJ 0.35 0.91 0.038 3.0 J1PW81 0.92 BN 0.81 9.8 9.8 9/18/2012 0.36 0.038 0.36 UJ 0.92 0.062 EXC-2 10 3.1 0.92 0.87 0.036 J1PW82 9/18/2012 0.34 UJ 0.34 0.036 0.80 0.80 EXC-4 0.039 0.83 0.83 9.2 J18J77 3/15/2013 0.36 0.36 0.93 0.93 0.039 EXC-5 0.82 J1PW85 9/18/2012 0.33 UJ 0.33 0.84 0.84 0.035 0.035 0.82 9.0 FXC-6 0.80 9.0 J1PW86 9/18/2012 0.34 0.87 0.87 0.037 0.037 0.80 FXC-7 J1PW87 9/18/2012 0.32 UJ 0.32 0.82 1) 0.82 0.034 0.034 20 2.0 0.83 0.83 9.7 EXC-8 J1PW88 9/18/2012 0.34 UJ 0.34 0.88 U 0.88 0.037 0.037 2.0 2.0 0.83 0.83 9.8 9.8 88 3.0 EXC-9 J1PW89 9/18/2012 0.36 UJ 0.36 0.92 0.92 0.038 0.038 1.9 0.78 U 0.78 10 U 10 9.0 U 9.0 3.0 3.0 EXC-10 J1PW90 9/18/2012 0.36 0.36 0.93 0.93 0.039 U 0.039 0.77 0.77 10 U 10 9.0 U 9.0 2.9 EXC-11 0.38 0.98 0.79 9.4 9.4 8.4 8.4 J1PW91 9/18/2012 0.98 0.041 0.041 0.79 EXC-12 9.4 J1PW92 9/18/2012 0.33 UJ 0.33 0.84 0.84 0.035 0.035 0.83 Statistical Computations Acenaphthylene (Method Anthracene (Method 8310) Acenaphthene (Method 8310) Cadmium Chloride Fluoride Antimony Boron % < Detection lin 83% 92% 92% 75% 92% 83% 92% 75% 390 Maximum value 0.062 0.92 1.3 0.40 Most Stringent Cleanup Limit for nonradionuclide and GW & River GW & River 96000 240000 96000 ug/kg GW Protection **GW Protection GW Protection GW Protection GW Protection GW Protection** RAG type 320 0.81 25000 96 ug/kg ug/kg Protection Protection (mg/kg) unless otherwise noted 3-PART TEST Maximum > Cleanup Limit NO > 10% above Cleanup Limit? NA NO NA NA NO NO NO Any sample > 2X Cleanup Limit NA NA NO NO NO Because all values are below Because all values are below The data set meets the 3-part The data set meets the 3-part The data set meets the 3-part Because all values are below The data set meets the 3-part Because all values are below background (0.81 mg/kg) the 3-Part Test Compliance? background (2.81 mg/kg) the WAC test criteria when compared to background (5 mg/kg) the WAC test criteria when compared to the background (100 mg/kg) the WAC test criteria when compared to test criteria when compared to WAC 173-340 3-part test is not the most stringent RAG. 173-340 3-part test is not required. most stringent RAG. 173-340 3-part test is not required. 173-340 3-part test is not required. the most stringent RAG. the most stringent RAG. required. Benzo(k)fluoranthene (Method Benzo(a)anthracene (Method Benzo(b)fluoranthene (Method Dibenz(a,h)anthracene Benzo(a)pyrene (Method 8310) Benzo(ghi)perylene (Method 8310) Chrysene (Method 8310) Fluoranthene (Method 8310) 8310) (Method 8310) ug/kg Q PQL ug/kg Q PQL Number ug/kg Q PQL Q ug/kg Q EXC-3 J1PW83 9/18/2012 660 N 3.2 440 N 6.4 500 N 4.2 7.2 3.9 4.8 11 Duplicate of J1PW8 .11PW93 9/18/2012 160 2.9 5.9 120 41 130 44 JX 10 240 J1PW81 EXC-1 9/18/2012 3.1 U 6.3 4.1 4.1 7.0 3.9 3.9 4.7 47 11 13 13 J1PW82 EXC-2 9/18/2012 4.9 JX 3.2 4.2 4.0 7.9 JX 4.9 11 13 JX 3/15/2013 EXC-4 J1RJ77 3.3 23 4.3 4.0 23 5.0 11 13 EXC-5 3.2 4.2 4.8 13 J1PW85 6.4 6.4 EXC-6 J1PW86 9/18/2012 3.2 4.2 4.2 EXC-7 J1PW87 9/18/2012 3.1 EXC-8 9/18/2012 3.1 6.3 4.1 4.1 7.0 3.9 U EXC-9 4.8 6.4 6.4 6.7 4.2 3.9 9.8 J1PW89 9/18/2012 3.2 U U JX U JX EXC-10 11 13 U 3.9 J1PW90 9/18/2012 3.2 4.2 6.4 6.4 4.8 EXC-11 6.0 3.9 6.7 10 3.0 3.9 6.7 4.5 J1PW91 9/18/2012 3.0 6.0 4.5 EXC-12 J1PW92 9/18/2012 6.8 6.0 3.9 44 Statistical Computations Benzo(b)fluoranthene (Method Benzo(a)anthracene (Method Benzo(k)fluoranthene (Method Dibenz(a,h)anthracene Benzo(a)pyrene (Method 8310) Benzo(ghi)perylene (Method 8310) Chrysene (Method 8310) Fluoranthene (Method 8310) 8310) (Method 8310) 8310) 8310) % < Detection lim 67% 58% 75% Maximum value 660 500 180 92 Most Stringent Cleanup Limit for nonradionuclide and GW & River GW & River GW & River GW & River GW & River River Protection 15 15 30 RAG type 15 15 48000 **GW Protection** 100 River Protection 18000 Protection Protection Protection Protection Protection 3-PART TEST Maximum > Cleanup Limit? YES NO NO > 10% above Cleanup Limit? YES YES YES YES NO Any sample > 2X Cleanup Limit? YES NO A detailed assessment will be A detailed assessment will be A detailed assessment will be A detailed assessment will be A detailed assessment will be detailed assessment will be A detailed assessment will be The data set meets the 3-part test performed. The data set meets performed. The data set meets performed. The data set meets performed. The data set does not performed. The data set meets performed. The data set meets performed. The data set meets the 3-Part Test Compliance? the 3-part test criteria when meet the 3-part test criteria when the 3-part test criteria when criteria when compared to the most the 3-part test criteria when the 3-part test criteria when the 3-part test criteria when 3-part test criteria when compared compared to the direct exposure compared to the direct exposure compared to the direct exposur stringent RAG. compared to the direct exposure compared to the direct ompared to the direct exposure to the direct exposure RAG. RAG. exposure RAG. RAG. RAG. RAG. 54 Qualifiers are defined on page 3.

| Project                                                | N. K. Schiffern<br>100-D Field Re |                                  | D-83:1 Waste                           | Sites Clea | anup Verific | cation 95% U              | —<br>CL Calcul      | ations                                       | Dat<br>Job No |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | Calc. No.               | 010                        |              | 1          |           | Dat           | te 0      |              | -             |          |            |                                                       |                        |                             |
|--------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------------|------------|--------------|---------------------------|---------------------|----------------------------------------------|---------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|----------------------------|--------------|------------|-----------|---------------|-----------|--------------|---------------|----------|------------|-------------------------------------------------------|------------------------|-----------------------------|
| 100-D-77, 100-D-62, and 1<br>Verification Data -Excava | 00-D-83:1 Maxi                    |                                  |                                        |            |              |                           |                     |                                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         | 4                          |              | ,          |           | Sileet N      | o         | 10 01 24     |               |          |            |                                                       |                        |                             |
| Sample                                                 | Sample                            | Sample                           | Fluoren                                | e (Method  | d 8310)      | Indeno(1,2                | ,3-cd)pyre<br>8310) | ene (Method                                  | Phenanth      | rene (Me    | ethod 8310)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pyren                            | ne (Metho               | d 8310)                    | Acenaphti    | nene (meth | nod 8270) | Acenaphth     | nylene (m | nethod 8270) | Anthrace      | ne (met  | hod 8270)  | Benzo(a)a                                             | nthracer<br>8270)      | ne (metho                   |
| Area                                                   | Number                            | Date                             | ug/kg                                  | Q          | PQL          | ug/kg                     | Q                   | PQL                                          | ug/kg         |             | 14655   Checked   J. D. Skoglin   Date   O/70/1/3   Sheet No.   10 of 24   Sheet No.   10 | PQL                              | ug/kg                   | Q                          | PQL          |            |           |               |           |              |               |          |            |                                                       |                        |                             |
| EXC-3 Duplicate of J1PW83                              | J1PW83<br>J1PW93                  | 9/18/2012<br>9/18/2012           | 250                                    | + +        | 5.3          | 300                       | N                   | 12                                           | 1200          | N           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | N                       |                            |              |            | 9.9       |               | J         | 16           |               | 1        | 16         | 1800                                                  |                        | 19                          |
| EXC-1                                                  | J1PW81                            | 9/18/2012                        | 71<br>5.2                              | U          | 4.8<br>5.2   | 43                        | U                   | 11                                           | 260           | 11          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              |            |           | 17            | U         |              | 73            | J        | 17         | 150                                                   | J                      | 20                          |
| EXC-2                                                  | J1PW82                            | 9/18/2012                        | 5.3                                    | U          | 5.2          | 12                        | U                   | 12<br>12                                     | 12            | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              |            |           |               |           |              |               | +        | 16         | 19                                                    | U                      | 19                          |
| EXC-4                                                  | J1RJ77                            | 3/15/2013                        | 5.4                                    | U          | 5.4          | 15                        | J                   | 12                                           | 12            | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | J                       |                            |              |            |           | _             | _         |              |               |          | 17         | 24                                                    | J                      | 19                          |
| EXC-5                                                  | J1PW85                            | 9/18/2012                        | 13                                     | J          | 5.3          | 31                        | -                   | 12                                           | 51            | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            | +            |            |           |               |           |              |               | +        | 17         | 42                                                    | J                      | 20                          |
| EXC-6                                                  | J1PW86                            | 9/18/2012                        | 5.3                                    | U          | 5.3          | 12                        | U                   | 12                                           | 12            | U           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | TI II                   |                            | _            |            |           |               |           |              |               | -        | -          | 49                                                    | J                      | 19                          |
| EXC-7                                                  | J1PW87                            | 9/18/2012                        | 5.1                                    | U          | 5.1          | 12                        | U                   | 12                                           | 12            | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              | -          |           | -             | _         |              |               | -        | -          | 20                                                    | U                      | 20                          |
| EXC-8                                                  | J1PW88                            | 9/18/2012                        | 5.2                                    | U          | 5.2          | 12                        | U                   | 12                                           | 12            | U           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            | -            | -          |           |               |           |              |               | _        | 17         | 20                                                    | U                      | 20                          |
| EXC-9                                                  | J1PW89                            | 9/18/2012                        | 5.3                                    | U          | 5.3          | 12                        | U                   | 12                                           | 12            | U           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19                               | J                       | 12                         | 10           | U          |           |               |           |              | -             | -        | 16         | 19                                                    | U                      | 19                          |
| EXC-10<br>EXC-11                                       | J1PW90<br>J1PW91                  | 9/18/2012                        | 5.3                                    | U          | 5.3          | 12                        | U                   | 12                                           | 12            | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            | 9.7          | U          | 9.7       | 16            | U         |              |               |          | 16         | 19                                                    | U                      | 19                          |
| EXC-12                                                 | J1PW91                            | 9/18/2012                        | 4.9<br>5.0                             | U          | 4.9          | 11                        | U                   | 11                                           | 11            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | _                       |                            | +            |            |           | 17            | U         | 17           | 17            | U        | 17         | 20                                                    | U                      | 20                          |
| Statistical Computations                               | 311 11 32                         | 3/10/2012                        | 3.0                                    | U          | 5.0          | 11                        | U                   | 11                                           | 11            | U           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                               | U                       | 11                         | 10           | U          | 10        | 17            | U         | 17           | 17            | U        | 17         | 20                                                    | U                      | 20                          |
|                                                        |                                   |                                  | Fluoren                                | e (Method  | d 8310)      | Indeno(1,2                |                     | ene (Method                                  | Phenanth      | rone (Ma    | thod 9210)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Duran                            | o /Mothe                | 4 0240)                    | Assessed     |            | ( 0070)   |               |           |              | Ι             |          |            | Benzo(a)a                                             | nthracer               | ne (metho                   |
|                                                        | % -                               | < Detection limit                | 83%                                    | 1          |              | 75%                       | 8310)               |                                              | 75%           | Helle (INIC | 21100 0310)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  | ie (Metho               | 0 6310)                    |              | nene (metr | 100 82/0) |               | nylene (m | nethod 8270) |               | ne (met  | hod 8270)  |                                                       | 8270)                  | ,                           |
|                                                        |                                   | Maximum value                    | 250                                    |            |              | 300                       |                     |                                              | 1200          | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 1                       |                            |              | -          |           |               | +         |              |               | -        |            | 67%<br>1800                                           | -                      | -                           |
| Most Stringent Cleanup                                 | imit for nonra                    | dionuclide and<br>RAG type       | 64000                                  | GW I       | Protection   | 15                        |                     | / & River otection                           | 240000        | GW          | Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | GW                      | Protection                 |              | GW P       | rotection |               | GW        | Protection   |               | GW       | Protection | 330                                                   |                        | W & River                   |
| 3-PA                                                   | RT TEST                           | (ug/kg)                          |                                        |            |              | -                         |                     | otection                                     |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            | -            |            |           | 30000         |           | riotection   | 240000        | uv       | riolection | 330                                                   | Pr                     | rotection                   |
|                                                        |                                   | Cleanup Limit?                   |                                        | NO         |              |                           | YES                 |                                              |               | NO          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | NO                      |                            |              | NO         |           |               | NO        |              |               | NO       |            |                                                       | YES                    |                             |
|                                                        |                                   | Cleanup Limit?                   |                                        | NO         |              |                           | YES                 |                                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              |            | 100       | -             |           |              |               |          |            |                                                       | NO                     | _                           |
| A                                                      | ny sample > 2X                    | Cleanup Limit?                   |                                        | NO         |              |                           | YES                 |                                              |               | NO          | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | NO                      |                            |              |            |           |               |           |              |               |          |            | -                                                     | YES                    | - 5 00 00                   |
|                                                        |                                   |                                  | The data set                           |            | - 0 1        |                           |                     | nent will be                                 |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              |            |           |               |           |              |               |          |            | A detailed                                            |                        | nent will be                |
| 3-Part Test                                            | Compliance?                       |                                  | The data set<br>criteria whe<br>most s |            | red to the   | the 3-pa                  | rt test crite       | a set meets<br>eria when<br>ect exposure     | test criteri  | a when c    | ompared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | criteria wher                    | n compare               | ed to the most             | criteria wh  | en compar  | ed to the | test criteri  | a when c  | ompared to   | test criteria | when o   | ompared to |                                                       | ne 3-part              | test criteria<br>the direct |
| Sample                                                 | Sample                            | Sample                           | Benzo(a)py                             | rene (mei  | thod 8270)   | Benzo(b)fl                |                     | ne (method                                   | Benzo(gh      |             | ne (method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chryse                           | ne (meth                | od 8270)                   | Dibenz(a,h)  |            | e (method | Fluoranth     | ene (me   | thod 8270)   | Fluoron       | s /moth  | -d 9070)   | Indeno                                                | (1,2,3-cd)             | )pyrene                     |
| Area                                                   | Number                            | Date                             | ug/kg                                  | Q          | PQL          | ug/kg                     | 8270)<br>Q          | PQL                                          | ug/kg         | 8270)<br>Q  | PQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                         |                            | ug/kg        |            | POI       |               |           |              |               |          |            | ug/kg                                                 | ethod 82               | 270)<br>PQL                 |
| EXC-3                                                  | J1PW83                            | 9/18/2012                        | 1100                                   |            | 19           | 2100                      |                     | 25                                           | 620           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              |            |           |               | 1         |              |               | - 4      | 17         | 550                                                   | - 4                    | 21                          |
| Duplicate of J1PW83<br>EXC-1                           | J1PW93<br>J1PW81                  | 9/18/2012                        | 110                                    | J          | 20           | 200                       | J                   | 26                                           | 62            | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            | 19           | J          | 19        | 340           |           | 36           |               | J        | 18         | 47                                                    | J                      | 22                          |
| EXC-2                                                  | J1PW82                            | 9/18/2012                        | 19                                     | J          | 19           | 25<br>40                  | J                   | 25<br>25                                     | 15            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | -                       |                            |              |            |           |               | U         |              | 17            | U        | 17         | 21                                                    | U                      | 21                          |
| EXC-4                                                  | J1RJ77                            | 3/15/2013                        | 36                                     | J          | 20           | 68                        | JX                  | 27                                           | 16            | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              | +          |           |               |           |              |               |          | 17         | 21                                                    | U                      | 21                          |
| EXC-5                                                  | J1PW85                            | 9/18/2012                        | 47                                     | J          | 19           | 79                        | J                   | 25                                           | 32            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 1                       |                            | -            |            |           |               |           |              |               | -        |            | 22                                                    | U                      | 22                          |
| EXC-6                                                  | J1PW86                            | 9/18/2012                        | 20                                     | U          | 20           | 26                        | U                   | 26                                           | 16            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            | +            |            |           |               |           |              |               |          |            | 24                                                    | J                      | 21                          |
| EXC-7                                                  | J1PW87                            | 9/18/2012                        | 20                                     | U          | 20           | 26                        | U                   | 26                                           | 16            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27                               | U                       | 27                         | 19           | -          |           |               | -         |              |               | -        | 18         | 22                                                    | U                      | 22                          |
| EXC-8<br>EXC-9                                         | J1PW88<br>J1PW89                  | 9/18/2012<br>9/18/2012           | 20<br>19                               | U          | 20<br>19     | 27                        | U                   | 27                                           | 16            | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | +                       |                            |              |            | 19        |               | U         | 37           | 18            | U        | 18         | 22                                                    | U                      | 22                          |
| EXC-10                                                 | J1PW90                            | 9/18/2012                        | 19                                     | U          | 19           | 25<br>25                  | U                   | 25<br>25                                     | 15            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 1 1                     |                            |              |            |           |               | -         |              | 17            | U        | 17         | 21                                                    | U                      | 21                          |
| EXC-11                                                 | J1PW91                            | 9/18/2012                        | 20                                     | U          | 20           | 26                        | U                   | 26                                           | 16            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              |            |           |               |           |              | 17            |          | 17         | 21                                                    | U                      | 21                          |
| EXC-12                                                 | J1PW92                            | 9/18/2012                        | 20                                     | U          | 20           | 26                        | U                   | 26                                           | 16            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              | +          |           |               | +         |              |               | 1        |            | 22                                                    | U                      | 22                          |
| Statistical Computations                               |                                   |                                  | - /\                                   |            |              | Benzo(b)fl                | uoranthe            | ne (method                                   |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              |            |           |               | - 0       | 35           | 10            |          | 18         |                                                       | U                      | 22                          |
|                                                        | 0/                                | < Detection limit                | Benzo(a)pyi                            | rene (met  | inod 8270)   |                           | 8270)               | ,                                            |               | 8270)       | - (method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                | ne (metho               | od 8270)                   |              |            | bonsem) = | Fluorantn     | ene (me   | thod 8270)   |               | e (metho | od 8270)   |                                                       | (1,2,3-cd)<br>ethod 82 |                             |
|                                                        |                                   | Maximum value                    | 47                                     |            |              | 67%<br>2100               | + +                 |                                              | 75%<br>620    | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              |            |           |               |           |              |               |          |            | 83%                                                   |                        |                             |
| Most Stringent Cleanup I                               | imit for nonra                    | dionuclide and                   |                                        | GW         | & River      | 1 2100                    | GW                  | / & River                                    | 020           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000                             |                         |                            | 160          |            |           | 3/00          |           |              | 580           | 1,       |            | 550                                                   |                        |                             |
|                                                        |                                   | RAG type<br>(mg/kg)              | 330                                    |            | otection     | 330                       |                     | otection                                     | 48000         | GW          | Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 330                              | Rive                    | r Protection               | 330          |            |           | 18000         | River     | r Protection | 64000         | GW       | Protection | 330                                                   |                        | V & River otection          |
| 3-PAI                                                  | RT TEST                           |                                  |                                        | NC         |              |                           |                     |                                              |               |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                         |                            |              |            |           |               |           |              |               |          |            |                                                       |                        |                             |
|                                                        |                                   | Cleanup Limit?<br>Cleanup Limit? |                                        | NO         |              |                           | YES                 |                                              |               | NO          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              |            |           |               |           |              |               |          |            |                                                       | YES                    |                             |
| Δ                                                      |                                   | Cleanup Limit?                   |                                        | NO         |              | -                         | NO<br>YES           |                                              |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              |            |           |               |           |              |               |          |            |                                                       | NO                     |                             |
|                                                        | , Janner ZA                       | O.Ouriop Limit:                  |                                        | 110        |              | A detailed                |                     | ent will be                                  |               | NO          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                         |                            |              | NO         |           | -             | NO        | 100          |               | NO       |            |                                                       | NO                     |                             |
| 3-Part Test Qualifiers are defined on pa               | Compliance?                       |                                  | The data set<br>criteria whe<br>most s |            | red to the   | performed.<br>meet the 3- | The data :          | set does not<br>criteria when<br>ct exposure | test criteria | a when co   | ompared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | performed. To<br>part test crite | he data se<br>eria when | et meets the 3 compared to | criteria whe | en compare | ed to the | test criteria | a when co | ompared to   | test criteria | when co  | mpared to  | A detailed<br>performed.<br>the 3-part<br>compared to | The data<br>test crite | a set meets<br>eria when    |

Washington Closure Hanford
Originator N. K. Schiffern 
Project 100-D Field Remediation

Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations

Date 07/01/13 14655

0100D-CA-V0508 J. D. Skoglie Checked

07/01/13 Date 11 of 24

1 100-D-77, 100-D-62, and 100-D-83:1 Maximum Calculations

2 Verification Data - Excavation (EXC)

| :  | Ciliodioi Data Extera |        |           |           | _         |           |           |         |            |        |        |         | ,      |          |        | 1     |          |     |       |         |     |       |           |           |
|----|-----------------------|--------|-----------|-----------|-----------|-----------|-----------|---------|------------|--------|--------|---------|--------|----------|--------|-------|----------|-----|-------|---------|-----|-------|-----------|-----------|
| 3  | Sample                | Sample | Sample    | Naphthale | ene (meti | nod 8270) | Phenanthr | ene (me | thod 8270) | Pyrene | (metho | d 8270) | 2-Meth | nylnapht | halene | Ca    | arbazole |     | Dib   | enzofur | an  | Arc   | ocior-126 | <b>30</b> |
| 4  | Area                  | Number | Date      | ug/kg     | Q         | PQL       | ug/kg     | Q       | PQL        | ug/kg  | Q      | PQL     | ug/kg  | Q        | PQL    | ug/kg | Q        | PQL | ug/kg | Q       | PQL | ug/kg | Q         | PQL       |
| 5  | EXC-3                 | J1PW83 | 9/18/2012 | 170       | J         | 30        | 3900      |         | 16         | 2900   |        | 12      | 120    | J        | 18     | 570   |          | 34  | 340   |         | 19  | 2.4   | U         | 2.4       |
| 6  | Duplicate of J1PW83   | J1PW93 | 9/18/2012 | 31        | U         | 31        | 360       |         | 17         | 270    | J      | 12      | 20     | J        | 19     | 42    | J        | 36  | _53   | J       | 20  | 2.5   | υ         | 2.5       |
| 7  | EXC-1                 | J1PW81 | 9/18/2012 | 30        | U         | 30        | 16        | U       | 16         | 12     | U      | 12      | 18     | U_       | 18     | 35    | U        | 35  | 19    | U       | 19  | _5.4  | J         | 2.5       |
| 8  | EXC-2                 | J1PW82 | 9/18/2012 | 30        | U         | 30        | 17        | U       | 17         | 38     | j      | 12      | 18     | U        | 18     | 35    | U        | 35  | 19    | U       | 19  | 2.4   | U         | 2.4       |
| 9  | EXC-4                 | J1RJ77 | 3/15/2013 | 32        | U         | 32        | 39        | J       | 17         | 76     | J      | 12      | 19     | U        | 19     | 37    | U        | 37  | 20    | U       | _20 | 2.7   | U         | 2.7       |
| 10 | EXC-5                 | J1PW85 | 9/18/2012 | 30        | U         | 30        | 39        | J       | 16         | 73     | J      | 12      | 18     | U        | 18     | 35    | U        | 35  | 19    | U       | 19  | 7.5   | JP        | 2.6       |
| 11 | EXC-6                 | J1PW86 | 9/18/2012 | 31        | U         | 31        | 17        | U       | 17         | 12     | U      | 12      | 19     | U        | 19     | 35    | U        | 35  | 20    | U       | 20  | 2.5   | U         | 2.5       |
| 12 | EXC-7                 | J1PW87 | 9/18/2012 | 31        | U         | 31        | 17        | U       | 17         | 12     | U      | 12      | 19     | U        | 19     | 35    | U        | 35  | 20    | U       | 20  | 2.6   | U         | 2.6       |
| 13 | EXC-8                 | J1PW88 | 9/18/2012 | 31        | U         | 31        | 17        | U       | 17         | 12     | U      | 12      | 19     | U        | 19     | 37    | U        | 37  | 20    | U_      | 20  | 2.6   | U         | 2.6       |
| 14 | EXC-9                 | J1PW89 | 9/18/2012 | 30        | U         | 30        | 16        | U       | 16         | 12     | U      | 12      | 18     | U        | 18     | 35    | U        | 35  | 19    | U       | 19  | 2.5   | U         | 2.5       |
| 15 | EXC-10                | J1PW90 | 9/18/2012 | 29        | U         | 29        | 16        | U       | 16         | 11     | U      | 11      | 18     | U        | 18     | 34    | Ū        | 34  | 19    | U       | 19  | 2.4   | U         | 2.4       |
| 16 | EXC-11                | J1PW91 | 9/18/2012 | 30        | U         | 30        | 17        | U       | 17         | 12     | U      | 12      | 19     | U        | 19     | 35    | U        | 35  | _ 20  | U       | 20  | 2.6   | U         | 2.6       |
| 17 | EXC-12                | J1PW92 | 9/18/2012 | 30        | U         | 30        | 17        | U       | 17         | 12     | J      | 12      | 19     | U        | 19     | 35    | U        | 35  | 20    | U       | _20 | 2.6   | U         | 2.6       |

18 Statistical Computations

| 10       | Statistical Computations                                              |               |                                                       |                 | <del>-</del>                                                   |               |                                                              |               |                                                                 | <u> </u>                     | _          |                                                        | Γ             |                                                               |                                        |          |                       |
|----------|-----------------------------------------------------------------------|---------------|-------------------------------------------------------|-----------------|----------------------------------------------------------------|---------------|--------------------------------------------------------------|---------------|-----------------------------------------------------------------|------------------------------|------------|--------------------------------------------------------|---------------|---------------------------------------------------------------|----------------------------------------|----------|-----------------------|
| 19       |                                                                       | Naphthalene   | e (method 8270)                                       | Phenanthr       | ene (method 8270)                                              | Pyrene        | (method 8270)                                                | 2-Met         | hylnaphthalene                                                  |                              | Carbazole  | •                                                      | Dik           | enzofuran                                                     | Ar                                     | ocior-12 | 50                    |
| 20       | % < Detection limit                                                   | 92%           |                                                       | 75%             |                                                                | 58%           |                                                              | 92%           |                                                                 | 92%                          |            |                                                        | 92%           | ·                                                             | 83%                                    |          |                       |
| 21       | Maximum value                                                         | 170           |                                                       | 3900            |                                                                | 2900          |                                                              | 120           |                                                                 | 570                          |            |                                                        | 340           |                                                               | 7.5                                    |          |                       |
| 22       | Most Stringent Cleanup Limit for nonradionuclide and RAG type (ug/kg) | 16000         | GW Protection                                         | 240000          | GW Protection                                                  | 48000         | GW Protection                                                | 3200          | GW Protection                                                   | 438                          | GW I       | Protection                                             | 3200          | GW Protection                                                 | 17                                     |          | / & River<br>otection |
| 23<br>24 | 3-PART TEST  Maximum > Cleanup Limit?                                 |               | NO                                                    |                 | NO                                                             |               | NO                                                           |               | NO                                                              |                              | YES        |                                                        |               | NO                                                            |                                        | NO       |                       |
| 25       | > 10% above Cleanup Limit?                                            |               | NO                                                    |                 | NO                                                             |               | NO                                                           |               | NO                                                              |                              | NO         |                                                        |               | NO                                                            |                                        | NO       |                       |
| 26       | Any sample > 2X Cleanup Limit?                                        |               | NO                                                    |                 | NO                                                             |               | NO                                                           | <u> </u>      | NO                                                              |                              | NO         |                                                        |               | NO                                                            |                                        | NO       |                       |
| 27       | 3-Part Test Compliance?                                               | criteria when | eets the 3-part test<br>compared to the<br>ngent RAG. | test criteria v | set meets the 3-part<br>when compared to the<br>stringent RAG. | test criteria | eet meets the 3-part<br>when compared to<br>t stringent RAG. | criteria when | et meets the 3-part test<br>compared to the most<br>ingent RAG. | performed.<br>3-part test of | The data s | ent will be<br>et meets the<br>en compared<br>ure RAG. | test criteria | set meets the 3-part<br>when compared to<br>st stringent RAG. | The data s<br>test criteria<br>the mos | when co  | ompared to            |

| <u>vvasiiiiiqtoii</u> | Ciosure mai | <u>iiora</u> |           |
|-----------------------|-------------|--------------|-----------|
|                       | Originator  | NI K         | Schifforn |

Project 100-N Field Remediation

Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations

07/01/13 14655 
 Calc. No.
 0100D-CA-V0508

 Checked
 J. D. Skoglie

# 1 100-D-77, 100-D-62, and 100-D-83:1 Statistical Calculations

| 3 Sample              | Sample       | Sample      |       | Arsenic                                          |      | _     | Barium |       | В     | erylliur | n     | C     | admium |       | Ch    | romiur       | n     |       | Cobalt         |       |       | opper                                            |      | Hexaval | ent Chr | omium |
|-----------------------|--------------|-------------|-------|--------------------------------------------------|------|-------|--------|-------|-------|----------|-------|-------|--------|-------|-------|--------------|-------|-------|----------------|-------|-------|--------------------------------------------------|------|---------|---------|-------|
| 4 Area                | Number       | Date        | mg/kg | Q                                                | PQL  | mg/kg | Q      | PQL   | mg/kg | Q        | PQL   | mg/kg | Q      | PQL   | mg/kg | Q            | PQL   | ma/ka | Q              | PQL   | ma/ka | T Q                                              | PQL  | ma/ka   | Q       | PQL   |
| 5 SPA-5               | J1R645       | 4/8/2013    | 2.4   |                                                  | 0.60 | 52.2  | X      | 0.070 | 0.21  |          | 0.030 | 0.047 | В      | 0.037 | 5.8   | Х            | 0.053 | 7.6   | X              | 0.091 | 14.6  | X                                                | 0.20 | 0.205   | 1       | 0.155 |
| 6 Duplicate of J1R645 | J1R653       | 4/8/2013    | 2.3   |                                                  | 0.60 | 43.9  | X      | 0.069 | 0.21  |          | 0.030 | 0.043 | В      | 0.037 | 6.0   | X            | 0.053 | 71    | X              | 0.091 | 14.0  | X                                                | 0.20 | 0.226   | +       | 0.155 |
| 7 SPA-1               | J1R641       | 4/8/2013    | 2.5   | T                                                | 0.58 | 52.0  | X      | 0.067 | 0.23  | 1        | 0.029 | 0.070 | В      | 0.036 | 7.9   | XM           | 0.051 | 77    | X              | 0.088 | 16.0  | X                                                | 0.19 | 0.283   |         | 0.155 |
| 8 SPA-2               | J1R642       | 4/8/2013    | 2.7   |                                                  | 0.61 | 63.0  | Х      | 0.070 | 0.23  |          | 0.031 | 0.074 | В      | 0.038 | 7.8   | X            | 0.054 | 7.4   | $\frac{1}{x}$  | 0.093 | 16.4  | X                                                | 0.20 | 0.303   | +       | 0.155 |
| 9SPA-3                | J1R643       | 4/8/2013    | 2.4   |                                                  | 0.60 | 53.0  | Х      | 0.069 | 0.24  |          | 0.030 | 0.042 | В      | 0.037 | 7.8   | X            | 0.053 | 7.7   | + <del>x</del> | 0.091 | 16.2  | X                                                | 0.20 | 0.522   | +       | 0.155 |
| 10SPA-4_              | J1R644       | 4/8/2013    | 1.6   |                                                  | 0.68 | 43.5  | X      | 0.078 | 0.16  | В        | 0.034 | 0.044 | В      | 0.042 | 4.6   | X            | 0.060 | 7.0   | + ^            | 0.10  | 13.6  | ×                                                | 0.22 | 0.165   | +-+     | 0.155 |
| 11 SPA-6              | J1R646       | 4/8/2013    | 2.3   |                                                  | 0.68 | 58.1  | Х      | 0.078 | 0.22  |          | 0.034 | 0.067 | В      | 0.042 | 6.9   | X            | 0.059 | 7.5   | Ÿ              | 0.10  | 15.5  | Ŷ                                                | 0.22 | 0.633   | +       | 0.155 |
| 12SPA-7               | J1R647       | 4/8/2013    | 2.0   |                                                  | 0.63 | 44.4  | Х      | 0.073 | 0.20  | 1        | 0.032 | 0.049 | В      | 0.039 | 6.5   | X            | 0.056 | 7.7   | Ŷ              | 0.096 | 13.5  | Y                                                | 0.21 | 0.185   | ++      | 0.155 |
| 13 SPA-8              | J1RKM8       | 4/29/2013   | 2.2   | 1                                                | 0.60 | 59.6  |        | 0.069 | 0.030 | u        | 0.030 | 0.15  | В      | 0.037 | 7.8   | <del>^</del> | 0.053 | 7.3   | <del> </del>   | 0.091 | 13.1  | <del>  ^-</del> -                                | 0.20 | 0.155   | 11      | 0.155 |
| 14 SPA-9              | J1RKM9       | 4/29/2013   | 2.4   |                                                  | 0.60 | 53.8  |        | 0.069 | 0.030 | B        | 0.030 | 0.16  | B      | 0.037 | 7.0   |              | 0.053 |       | + 🗘            | 0.091 | 14.6  | <del>                                     </del> | 0.20 | 0.155   | + ; -   | 0.155 |
| 15 SPA-10             | J1RKM6       | 4/29/2013   | 2.7   |                                                  | 0.65 | 53.5  | +      | 0.075 | 0.057 |          | 0.033 | 0.14  | D      | 0.040 | 7.7   |              | 0.057 | 7.5   | + 🔆            |       |       | ├                                                |      |         | + :     | 0.155 |
| 16 SPA-11             | J1RKM7       | 4/29/2013   | 2.6   | <del>                                     </del> | 0.63 | 60.2  |        | 0.073 | 0.068 | B        |       |       | D .    |       | 7.7   |              |       | 7.6   | 1 X            | 0.099 | 14.3  | ├                                                | 0.21 | 0.155   | 1       |       |
| 17 SPA-12             | J1RKM5       | 4/29/2013   | 2.2   | + -                                              | 0.63 | 50.2  | 1      |       |       | <b>₽</b> | 0.032 | 0.15  | В      | 0.039 | 9.4   |              | 0.056 | 6.4   | X              | 0.096 | 14.2  | <u> </u>                                         | 0.21 | 0.155   | _ U_    | 0.155 |
| 10 01 11 12           | 1 01117/10/3 | 1 4/23/2013 | 2.2   | 1                                                | 0.63 | 58./  | i      | 0.072 | 0.031 | U        | 0.031 | 0.15  | В      | 0.039 | 7.8   |              | 0.055 | 7.2   | X              | 0.095 | 13.8  | 1                                                | 0.21 | 0.155   | _ U _   | 0.155 |

19 Statistical Computation Input Data

| 19 31 | atistical computation | input Data    |           |         |        |           |             |          |        |        |                     |
|-------|-----------------------|---------------|-----------|---------|--------|-----------|-------------|----------|--------|--------|---------------------|
| 20    | Sample                | Sample        | Sample    | Arsenic | Barium | Beryllium | Cadmium     | Chromium | Cobalt | Copper | Hexavalent Chromium |
| 21    | Area                  | Number        | Date      | mg/kg   | mg/kg  | mg/kg     | mg/kg       | mg/kg    | mg/kg  | mg/kg  | mg/kg               |
| 22    | SPA-5                 | J1R645/J1R653 | 4/8/2013  | 2.4     | 48.1   | 0.21      | 0.045       | 5.9      | 74     | 14.3   | 0.216               |
| 23    | SPA-1                 | J1R641        | 4/8/2013  | 2.5     | 52.0   | 0.23      | 0.070       | 7.9      | 7.7    | 16.0   | 0.210               |
| 24    | SPA-2                 | J1R642        | 4/8/2013  | 2.7     | 63.0   | 0.23      | 0.074       | 7.9      | 7.7    | 16.4   | 0.303               |
| 25    | SPA-3                 | J1R643        | 4/8/2013  | 2.4     | 53.0   | 0.24      | 0.042       | 7.8      | 7.4    | 16.2   | 0.522               |
| 26    | SPA-4                 | J1R644        | 4/8/2013  | 1.6     | 43.5   | 0.16      | 0.044       | 4.6      | 7.9    | 13.6   | 0.165               |
| 27    | SPA-6                 | J1R646        | 4/8/2013  | 2.3     | 58.1   | 0.22      | 0.067       | 6.9      | 7.9    | 13.0   |                     |
| 28    | SPA-7                 | J1R647        | 4/8/2013  | 2.0     | 44.4   | 0.20      | 0.049       | 6.5      | 7.4    | 15.5   | 0.633               |
| 29    | SPA-8                 | J1RKM8        | 4/29/2013 | 2.2     | 59.6   | 0.015     | 0.15        | 7.0      | 7.7    | 13.5   | 0.185               |
| 30    | SPA-9                 | J1RKM9        | 4/29/2013 | 2.4     | 53.8   | 0.030     | 0.15        | 7.8      | 7.3    | 13.1   | 0.0775              |
| 31    | SPA-10                | J1RKM6        | 4/29/2013 | 2.7     | 53.5   | 0.057     | 0.16        | 7.4      | 7.5    | 14.6   | 0.0775              |
| 32    | SPA-11                | J1RKM7        | 4/29/2013 | 2.6     | 60.2   | 0.068     | <del></del> | 1.7      | 7.6    | 14.3   | 0.0775              |
| 33    | SPA-12                | J1RKM5        | 4/29/2013 | 2.2     | 58.7   |           | 0.15        | 9.4      | 6.4    | 14.2   | 0.0775              |
|       | 01 A-12               | T 0111KIND    | 4/23/2013 | 4.6     | 58./   | 0.016     | 0.15        | 7.8      | 7.2    | 1 13.8 | 0.0775              |

| 34 | Statistical Computations                                                    |          |            |                                           |                            |          |                             |                        |                                                      |                        |            |           |                             |                                                  |                                                                     |                        |                                                                                 |                                                  |                                                      |                       |                                                                        |
|----|-----------------------------------------------------------------------------|----------|------------|-------------------------------------------|----------------------------|----------|-----------------------------|------------------------|------------------------------------------------------|------------------------|------------|-----------|-----------------------------|--------------------------------------------------|---------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|-----------------------|------------------------------------------------------------------------|
| 35 |                                                                             |          | Arsenic    |                                           |                            | Barium   |                             | В                      | eryllium                                             |                        | С          | admium    | 1                           | Ch                                               | romium                                                              | _                      | Cobait                                                                          | I                                                | Copper                                               | Hexava                | ent Chromium                                                           |
| 36 | 95% UCL based on                                                            |          |            | ≥ 10), use<br>distribution.               | Large data<br>MTCAS<br>dis |          | normal                      | lognorm<br>distributio | nta set (n<br>nai and no<br>on rejecte<br>statistic. | rmal                   | distributi | nat and n | normal<br>ted, use          | lognorm<br>distributio                           | ta set (n ≥ 10),<br>al and normal<br>on rejected, use<br>statistic. | lognori<br>distribut   | ata set (n ≥ 10),<br>mal and normal<br>ion rejected, use<br>-statistic.         | Large dat<br>MTCA                                | a set (n ≥ 10), use<br>Stat lognormal<br>stribution. | lognorn<br>distributi | ata set (n ≥ 10),<br>nal and normal<br>on rejected, use<br>estatistic. |
| 37 | N                                                                           | 12       |            |                                           | 12                         |          |                             | 12                     |                                                      |                        | 12         |           |                             | 12                                               |                                                                     | 12                     |                                                                                 | 12                                               |                                                      | 12                    |                                                                        |
| 38 | % < Detection limit                                                         |          |            |                                           | 0%                         |          |                             | 17%                    |                                                      |                        | 0%         |           |                             | 0%                                               |                                                                     | 0%                     |                                                                                 | 0%                                               |                                                      | 42%                   | <del>                                     </del>                       |
| 39 | Mean                                                                        | 2.3      |            |                                           | 54.0                       |          |                             | 0.14                   |                                                      |                        | 0.095      |           |                             | 7.3                                              |                                                                     | 7.4                    | 1 1                                                                             | 14.6                                             | + +                                                  | 0.225                 | <del>  -  </del>                                                       |
| 40 | Standard deviation                                                          |          |            |                                           | 6.3                        |          |                             | 0.094                  |                                                      |                        | 0.050      |           |                             | 1.2                                              |                                                                     | 0.38                   |                                                                                 | 1.1                                              |                                                      | 0.185                 | <del>                                     </del>                       |
| 41 | 95% UCL on mean                                                             | 2.5      |            |                                           | 57.6                       |          |                             | 0.18                   |                                                      |                        | 0.12       |           | _                           | 7.9                                              |                                                                     | 7.6                    |                                                                                 | 15.2                                             |                                                      | 0.313                 |                                                                        |
| 42 | Maximum value                                                               | 2.7      |            | <u> </u>                                  | 63.0                       |          |                             | 0.24                   | <u> </u>                                             |                        | 0.16       |           |                             | 9.4                                              |                                                                     | 7.9                    |                                                                                 | 16.4                                             |                                                      | 0.633                 |                                                                        |
| 43 | Most Stringent Cleanup Limit for nonradionuclide and RAG<br>type<br>(mg/kg) | 20       |            | GW & River rotection                      | 200                        | GW I     | Protection                  | 1.51                   | GW &<br>Prote                                        |                        | 0.81       |           | & River tection             | 18.5                                             | GW & River<br>Protection                                            | 15.7                   | GW Protection                                                                   | 22.0                                             | River Protection                                     | 2                     | River Protection                                                       |
| 44 | WAC 173-340 3-PART TEST                                                     |          |            |                                           |                            |          |                             |                        |                                                      |                        |            |           |                             | <del>                                     </del> | <del></del>                                                         | <del></del>            |                                                                                 | -                                                |                                                      | <del> </del>          |                                                                        |
| 45 | 95% UCL > Cleanup Limit?                                                    |          | NA         |                                           |                            | NA       |                             |                        | NA                                                   |                        |            | NA        |                             | ľ                                                | NA                                                                  |                        | NA                                                                              |                                                  | NA                                                   |                       | NO                                                                     |
| 46 | > 10% above Cleanup Limit?                                                  |          | NΑ         |                                           |                            | NA       |                             |                        | NA                                                   |                        |            | NA        |                             |                                                  | NA                                                                  |                        | NA NA                                                                           | <del>                                     </del> | NA NA                                                |                       | NO                                                                     |
| 47 | Any sample > 2X Cleanup Limit?                                              |          | NA         |                                           |                            | NA       |                             |                        | NA                                                   |                        |            | NA        |                             | -                                                | NA                                                                  | _                      | NA                                                                              | <u> </u>                                         | NA                                                   | 1                     | NO                                                                     |
| 48 | WAC 173-340 Compliance?                                                     | backgrou | ınd (6.5 n | are below<br>ng/kg) the<br>rt test is not | background<br>WAC 173-34   | d (132 m | ng/kg) the<br>t test is not | background<br>WAC 173- | 1 (1.51 mg                                           | g/kg) the<br>t test is |            | d (0.81 m | ng/kg) the<br>t test is not | background<br>WAC 173-34                         | values are below<br>(18.5 mg/kg) the                                | backgroun<br>WAC 173-3 | Il values are below<br>d (15.7 mg/kg) the<br>40 3-part test is not<br>required. | backgroun<br>WAC 173                             |                                                      | test criteria         | et meets the 3-part<br>when compared to<br>stringent RAG.              |

| Washington Closure Hanford                                                                                                                                       | CALC            | ULATION SHEET     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|--|
| Originator N. K. Schiffern VD  Project 100-N Field Remediation  Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations | Date<br>Job No. | 07/01/13<br>14655 |  |

Calc. No. 0100D-CA-V0508
Checked J. D. Skoglie

 Rev. No.
 0

 Date
 07/01/13

 Sheet No.
 13 of 24

1 100-D-77, 100-D-62, and 100-D-83:1 Statistical Calculations 2 Verification Data -Staging Pile Area (SPA)

| Sample              | Sample | Sample    |       | Lead |      | Ma    | ingane                                           | se    | '      | Mercury                                          | ,      | Мо    | lybdeni      | ım   |       | Nickel         |       | Va    | nadiun            | 1     |       | Zinc     |      | (     | hloride                                          | ,        |
|---------------------|--------|-----------|-------|------|------|-------|--------------------------------------------------|-------|--------|--------------------------------------------------|--------|-------|--------------|------|-------|----------------|-------|-------|-------------------|-------|-------|----------|------|-------|--------------------------------------------------|----------|
| Area                | Number | Date      | mg/kg | Q    | PQL  | mg/kg | Q                                                | PQL   | mg/kg  | l Q                                              | PQL    | ma/ka | Q            | PQL  | ma/ka | Q              | PQL   | ma/ka | Q                 | PQL   | ma/ka | Q        | PQL  |       | T Q                                              | PC       |
| SPA-5               | J1R645 | 4/8/2013  | 3.5   |      | 0.25 | 260   | Х                                                | 0.091 | 0.0096 | B                                                | 0.0058 | 0.24  | 11           | 0.24 | 9.5   | - <del>-</del> | 0.11  | 52.6  | 💝                 | 0.086 |       | <u>u</u> |      | mg/kg | <del>  u</del>                                   | _        |
| Duplicate of J1R645 | J1R653 | 4/8/2013  | 5.4   | 1    | 0.24 | 254   | X                                                | 0.091 | 0.0088 | B                                                | 0.0060 | 0.24  | <del>-</del> | 0.24 | 7.3   | + 🗘 🖯          | 0.11  |       | 1 0               |       | 38.5  | 1.       | 0.36 | 5.9   | <b>_</b>                                         | 2.0      |
| SPA-1               | J1R641 | 4/8/2013  | 3.6   |      | 0.24 | 295   | X                                                | 0.088 | 0.011  | BM                                               | 0.0054 | 0.24  | <u> </u>     | 0.24 | 7.3   | 1              |       | 49.5  |                   | 0.085 | 37.8  | X        | 0.36 | 6.5   | <u> </u>                                         | 2.0      |
| SPA-2               | J1R642 | 4/8/2013  | 5.6   | 1    | 0.25 | 280   | T Y                                              | 0.000 | 0.043  | - DIVI                                           | 0.0063 |       | P P          |      | 9.5   | XM             | 0.11  | 51.1  | X                 | 0.083 | 44.5  | X        | 0.35 | 3.1   | В                                                | 2.0      |
| SPA-3               | J1R643 | 4/8/2013  | 4.4   | +    | 0.24 | 284   | <del>                                     </del> | 0.093 |        | + -                                              | -      | 0.35  | <u> </u>     | 0.24 | 8.8   | X              | 0.11  | 53.9  | X                 | 0.087 | 45.3  | X        | 0.37 | 3.9   | В                                                | 2.0      |
| SPA-4               | J1R644 | 4/8/2013  | 2.0   | +    | 0.24 |       | -                                                |       | 0.036  | <b>.</b>                                         | 0.0064 | 0.46  | В            | 0.24 | 8.2   | X              | 0.11_ | 55.2  | X                 | 0.085 | 51.3  | X        | 0.36 | 7.3   |                                                  | 2.       |
| SPA-6               | J1R646 | 4/8/2013  | 2.0   | 1    |      | 264   | X                                                | 0.10  | 0.0056 | 1 0                                              | 0.0056 | 0.27  | U            | 0.27 | 7.1   | X              | 0.13  | 58.0  | X                 | 0.097 | 39.4  | X        | 0.41 | 2.9   | В                                                | 2.6      |
| SPA-7               | J1R647 | 4/8/2013  | - 1.1 | -    | 0.28 | 273   | X                                                | 0.10  | 0.022  |                                                  | 0.0060 | 0.32  | B            | 0.27 | 8.2   | X              | 0.13  | 53.6  | X                 | 0.096 | 43.2  | X        | 0.41 | 19.1  |                                                  | 2.       |
| SPA-8               |        |           | 2.6   |      | 0.26 | 249   | X                                                | 0.096 | 0.0055 | U                                                | 0.0055 | 0.25  | U            | 0.25 | 10.1  | X              | 0.12  | 51.5  | X                 | 0.090 | 36.9  | X        | 0.38 | 9.2   |                                                  | 2.       |
|                     | J1RKM8 | 4/29/2013 | 4.0   | 1    | 0.24 | 308   | X                                                | 0.091 | 0.0054 | U                                                | 0.0054 | 0.24  | U            | 0.24 | 9.6   | Х              | 0.11  | 45.5  |                   | 0.085 | 38.2  | x        | 0.36 | 4.2   | В                                                | 1.9      |
| SPA-9               | J1RKM9 | 4/29/2013 | 4.3   |      | 0.24 | 291   | X                                                | 0.091 | 0.011  | В                                                | 0.0051 | 0.24  | U            | 0.24 | 10.0  | X              | 0.11  | 45,4  |                   | 0.085 | 39.6  | X        | 0.36 | 4.1   | B                                                | 2.0      |
| SPA-10              | J1RKM6 | 4/29/2013 | 3.9   |      | 0.27 | 292   | X                                                | 0.099 | 0.0085 | В                                                | 0.0059 | 0.33  | В            | 0.26 | 9.9   | X              | 0.12  | 46.2  | 1                 | 0.093 | 36.2  | Ŷ        | 0.39 | 14.1  | <del>                                     </del> |          |
| SPA-11_             | J1RKM7 | 4/29/2013 | 3.5   |      | 0.26 | 265   | Х                                                | 0.096 | 0.0070 | B                                                | 0.0062 | 0.25  | 11           | 0.25 | 12.9  | V -            | 0.12  | 40.0  | +                 | 0.090 | 33.5  | + 🗘      |      |       |                                                  | <u> </u> |
| SPA-12              | J1RKM5 | 4/29/2013 | 3.4   |      | 0.26 | 273   | X                                                | 0.095 | 0.0048 | <del>                                     </del> | 0.0048 | 0.33  | <u> </u>     | 0.25 | 10.0  | + + +          |       |       | $\vdash - \vdash$ |       |       | 4        | 0.38 | 4.3   | 5                                                | 2.0      |
|                     |        |           |       | -    | 0.20 |       | , ,                                              | 0.000 | 0.0040 | 0                                                | 0.0040 | 0.33  |              | 0.25 | 10.9  |                | 0.12  | 46.8  | L 1               | 0.089 | 37.3  | X        | 0.38 | 4.2   | BN                                               | 1        |

19 Statistical Computation Input Data 20 Sample Sample Lead Manganese Mercury Molybdenum Nickel Vanadium Sample Zinc Chloride 21 Area Number Date mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg SPA-5 J1R645/J1R653 4/8/2013 4.5 257 0.0092 0.12 8.4 51.1 38.2 6.2 SPA-1 J1R641 4/8/2013 3.6 295 0.011 0.24 9.5 51.1 44.5 3.1 SPA-2 J1R642 4/8/2013 5.6 280 0.043 0.35 8.8 53.9 45.3 3.9 SPA-3 J1R643 4/8/2013 4.4 284 0.036 0.46 8.2 55.2 51.3 SPA-4 7.3 J1R644 4/8/2013 2.0 264 0.0028 0.14 7.1 58.0 39.4 2.9 SPA-6 J1R646 4/8/2013 7.1 273 0.022 0.32 8.2 53.6 43.2 28 19.1 SPA-7 J1R647 4/8/2013 2.6 249 0.0028 0.13 10.1 51.5 36.9 29 30 9.2 SPA-8 J1RKM8 4/29/2013 4.0 308 0.0027 0.12 9.6 45.5 SPA-9 38.2 4.2 J1RKM9 4/29/2013 4.3 291 0.011 0.12 10.0 45.4 39.6 4.1 SPA-10 J1RKM6 4/29/2013 3.9 292 46.2 0.0085 0.33 9.9 SPA-11 36.2 32 33 14.1 J1RKM7 4/29/2013 4/29/2013 3.5 0.0070 265 0.13 12.9 40.0 33.5 4.3 SPA-12

| 34 | Statistical Computations 4/29/2013                                          | 3.4                                           | 1                                   |                 | 273                      | <u> </u>                                   | <del></del> | 0.0024                                        |                           |                       | 0.33                                     |                                                      |                  | 10.9                                 |                                                      | 46.8                     |                                                                          | 37.3                   |                                                                           | 4.2                      |                                                                        |
|----|-----------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------|-----------------|--------------------------|--------------------------------------------|-------------|-----------------------------------------------|---------------------------|-----------------------|------------------------------------------|------------------------------------------------------|------------------|--------------------------------------|------------------------------------------------------|--------------------------|--------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------|
| 35 |                                                                             |                                               | Lead                                |                 | Ma                       | nganese                                    |             |                                               | Mercury                   |                       | Мо                                       | iybdenu                                              | m                | Nic                                  | kel                                                  | Va                       | anadium                                                                  |                        | Zinc                                                                      |                          | Chloride                                                               |
| 36 | 95% UCL based on                                                            | dis                                           | set (n ≥<br>Stat logn<br>stribution | ormal           | i .                      | set (n ≥ 10<br>Stat lognori<br>stribution. |             |                                               | set (n ≥ 1<br>Stat lognor |                       | lognorn<br>distributi                    | ata set (n<br>nal and no<br>on rejecte<br>statistic. | ormal<br>ed, use | Large data se<br>MTCAStat<br>distrit |                                                      | MTCAS                    | set (n ≥ 10), use<br>Stat lognormal<br>stribution.                       | MTCAS                  | set (n ≥ 10), use<br>Stat lognormal<br>stribution.                        | lognorr<br>distributi    | ata set (n ≥ 10),<br>nal and normal<br>on rejected, use<br>-statistic. |
| 37 | N N                                                                         | 12                                            |                                     |                 | 12                       |                                            |             | 12                                            |                           |                       | 12                                       |                                                      |                  | 12                                   |                                                      | 12                       |                                                                          | 12                     | T -                                                                       | 12                       |                                                                        |
| 30 | % < Detection limit                                                         | 0%                                            | <b>├</b> ──                         |                 | 0%                       |                                            | _           | 33%                                           |                           |                       | 50%                                      |                                                      |                  | 0%                                   |                                                      | 0%                       |                                                                          | 0%                     |                                                                           | 0%                       | <del>                                     </del>                       |
| 40 | Mean Charded to initial                                                     | 4.1                                           | -                                   |                 | 278                      |                                            |             | 0.013                                         |                           |                       | 0.23                                     |                                                      |                  | 9.5                                  |                                                      | 49.9                     |                                                                          | 40.3                   |                                                                           | 6.9                      |                                                                        |
| 41 | Standard deviation                                                          | 1.3                                           |                                     |                 | 17.3                     | -                                          | _           | 0.014                                         |                           |                       | 0.12                                     |                                                      |                  | 1.5                                  |                                                      | 5.1                      |                                                                          | 4.9                    |                                                                           | 5.0                      |                                                                        |
| 42 | 95% UCL on mean                                                             | 5.0                                           |                                     |                 | 287                      |                                            | _           | 0.034                                         |                           |                       | 0.29                                     |                                                      |                  | 10.3                                 |                                                      | 52.8                     |                                                                          | 43.0                   |                                                                           | 9.3                      |                                                                        |
| 72 | Maximum value                                                               |                                               |                                     |                 | 308                      |                                            |             | 0.043                                         |                           |                       | 0.46                                     |                                                      |                  | 12.9                                 |                                                      | 58.0                     |                                                                          | 51.3                   | <del>   </del>                                                            | 19.1                     | <del>  -   -  </del>                                                   |
| 43 | Most Stringent Cleanup Limit for nonradionuclide and RAG<br>type<br>(mg/kg) | 10.2                                          |                                     | & River tection | 512                      | GW &<br>Protect                            |             | 0.33                                          | GW &<br>Prote             |                       | 8                                        | GW Pr                                                | rotection        | 19.1                                 | GW Protection                                        | 85.1                     | GW Protection                                                            | 67.8                   | River Protection                                                          |                          | GW Protection                                                          |
| 44 | WAC 173-340 3-PART TEST                                                     |                                               |                                     |                 |                          | _                                          |             | -                                             |                           |                       | <del> </del>                             |                                                      |                  |                                      |                                                      | _                        |                                                                          |                        | <del>_</del>                                                              |                          |                                                                        |
| 45 | 95% UCL > Cleanup Limit?                                                    |                                               | NA                                  |                 |                          | NA                                         |             |                                               | NA                        |                       | İ                                        | NO                                                   |                  | N                                    |                                                      | l                        | N/ 4                                                                     | İ                      | •••                                                                       | 1                        |                                                                        |
| 46 | > 10% above Cleanup Limit?                                                  |                                               | NA                                  |                 |                          | NA                                         |             |                                               | NA                        |                       | <u> </u>                                 | NO                                                   |                  | N                                    |                                                      |                          | NA                                                                       |                        | NA                                                                        |                          | NA                                                                     |
| 47 | Any sample > 2X Cleanup Limit?                                              |                                               | NA                                  |                 |                          | NA                                         |             |                                               | NA                        |                       |                                          | NO                                                   | _                | N                                    |                                                      |                          | NA NA                                                                    |                        | NA                                                                        | <del></del>              | NA                                                                     |
| 48 | WAC 173-340 Compliance?                                                     | Because all<br>background<br>WAC 173-34<br>re | (10.2 m                             | g/kg) the       | background<br>WAC 173-34 | i (512 mg/i                                | kg) the     | Because all<br>background<br>WAC 173-3<br>not | values ar                 | /kg) the<br>t test is | The data se<br>test criteria<br>the most | et meets t                                           | npared to        | Because all va                       | ues are below<br>9.1 mg/kg) the<br>-part test is not | background<br>WAC 173-34 | values are below<br>(85.1 mg/kg) the<br>0 3-part test is not<br>equired. | background<br>WAC 173- | values are below<br>i (67.8 mg/kg) the<br>340 3-part test is<br>required. | background<br>WAC 173-34 | NA I values are below d (100 mg/kg) the 10 3-part test is not equired. |

Rev. No.

Date 07/01/13 Sheet No. 14 of 24

|     | Washington Closure Har    | nford                                  |                                |               |                                                  |               |                                                  |                       |                                                  |                                                  | C                    | ALCULAT    | TION SHEET       |                                                  |             |               |                |                |               |                |                      |
|-----|---------------------------|----------------------------------------|--------------------------------|---------------|--------------------------------------------------|---------------|--------------------------------------------------|-----------------------|--------------------------------------------------|--------------------------------------------------|----------------------|------------|------------------|--------------------------------------------------|-------------|---------------|----------------|----------------|---------------|----------------|----------------------|
|     |                           | N. K. Schiffern                        | $\omega$                       |               |                                                  |               |                                                  |                       |                                                  |                                                  | Data                 | . 0        | 7/04/40          |                                                  |             |               |                |                |               |                |                      |
|     | Project                   | 100-D Field Remedia                    |                                |               |                                                  |               |                                                  | _                     |                                                  |                                                  | Date<br>Job No.      |            | 7/01/13<br>14655 | _                                                |             |               | alc. No        |                | O-CA-V0508    | <del>. Q</del> |                      |
|     | Subject                   | 100-D-77, 100-D-62,                    | and 100-D-83:1                 | Waste Sites ( | leanup                                           | Verification  | 95% UCL Ca                                       | alculatio             | ns                                               | _                                                | 000 110.             |            | 14000            | _                                                |             | ,             | Checked        | J. L           | ). Skoglie    | ð –            |                      |
| 1   | 100-D-77, 100-D-62, and   | 100-D-83-1 Statistica                  | Calculations                   |               |                                                  |               |                                                  |                       | _                                                | _                                                |                      |            |                  |                                                  |             |               |                |                | ,             |                |                      |
| 2   | Verification Data -Stagin | g Pile Area (SPA)                      | Calculations                   |               |                                                  |               |                                                  |                       |                                                  |                                                  |                      |            |                  |                                                  |             |               |                |                |               |                |                      |
| 3   | Sample                    | Sample                                 | Sample                         | Nitro         | gen in i                                         | Jitrata       | Nitrogen in                                      | - LIII-II-            | and Mitsate                                      |                                                  |                      |            | T =              |                                                  |             | <del></del>   |                |                |               |                |                      |
| 4   | Area                      |                                        | 1                              |               |                                                  |               | +                                                |                       |                                                  | <del></del>                                      | Sulfate              |            | T                | PH - Dies                                        | iel         | TPH           | - Diese        | I EXT          | Ar            | ocior-12       | 260                  |
| 5   | SPA-5                     | Number<br>J1R645                       | Date<br>4/8/2013               | mg/kg<br>1,2  | I Q                                              | PQL           | mg/kg                                            | Q                     | PQL                                              | mg/kg                                            | Q                    | PQL        | ug/kg            | Q                                                | PQL         | ug/kg         | Q              | PQL            | ug/kg         | Q              | PQL                  |
| 6   | Duplicate of J1R645       | J1R653                                 | 4/8/2013                       | 1.3           | В                                                | 0.32          | 0.85                                             | C                     | 0.31                                             | 11.4                                             | +                    | 1.8        | 3900             | JB                                               | 700         | 5700          | В              | 1000           | 2.6           | U              | 2.6                  |
| 7   | SPA-1                     | J1R641                                 | 4/8/2013                       | 0.99          | В                                                | 0.32          | 0.52                                             | BMC                   | 0.31                                             | 11.9<br>6.6                                      | +                    | 1.8        | 4500             | B                                                | 670         | 6800          | B              | 980            | 2.6           | U              | 2.6                  |
| 8   | SPA-2                     | J1R642                                 | 4/8/2013                       | 1.7           | В                                                | 0.32          | 1.4                                              | C                     | 0.30                                             | 9.9                                              |                      | 1.7        | 4500             | B                                                | 700         | 7000          | В              | 1000           | 2.6           | J              | 2.5                  |
| 9   | SPA-3                     | J1R643                                 | 4/8/2013                       | 3.2           | +-                                               | 0.33          | 3.1                                              | + -                   | 0.32                                             | 36.0                                             | +                    | 1.8        | 6800             | B                                                | 700         | 16000         | В              | 1000           | 20            |                | 2.6                  |
| 0   | SPA-4                     | J1R644                                 | 4/8/2013                       | 0.90          | В                                                | 0.32          | 0.48                                             | BC                    | 0.32                                             | 5.3                                              | +                    | 1.8        | 7400             | B                                                | 710         | 17000         | В              | 1000           | 14            |                | 2.7                  |
| 1   | SPA-6                     | J1R646                                 | 4/8/2013                       | 1.9           | В                                                | 0.34          | 1.8                                              | C                     | 0.32                                             | 10.6                                             | +                    | 1.8        | 2200             | JB                                               | 700         | 2700          | JB             | 1000           | 2.6           | U              | 2.6                  |
| 12  | SPA-7                     | J1R647                                 | 4/8/2013                       | 0.94          | B                                                | 0.33          | 0.48                                             | BC                    | 0.32                                             | 4.5                                              | В                    | 1.8        | 6100<br>3200     | В                                                | 670         | 11000         | В              | 990            | 3.9           | J              | 2.6                  |
| 3   | SPA-8                     | J1RKM8                                 | 4/29/2013                      | 0.96          | В                                                | 0.31          | 0.56                                             | В                     | 0.30                                             | 4.2                                              | В                    | 1.7        | 5400             | JB                                               | 680         | 4900          | B              | 1000           | 2.5           | U              | 2.5                  |
| 4   | SPA-9                     | J1RKM9                                 | 4/29/2013                      | 0.80          | В                                                | 0.32          | 0.32                                             | В                     | 0.30                                             | 3.3                                              | В                    | 1.7        | 4200             | B                                                | 660<br>660  | 11000         | В              | 970            | 2.6           | U              | 2.6                  |
| 5   | SPA-10                    | J1RKM6                                 | 4/29/2013                      | 1.5           | В                                                | 0.31          | 0.30                                             | † B                   | 0.29                                             | 5.2                                              | + -                  | 1.7        | 6100             | В                                                | 670         | 9300          | B              | 980            | 3.1           | J              | 2.5                  |
| 6   | 017,71                    | J1RKM7                                 | 4/29/2013                      | 0.82          | В                                                | 0.32          | 0.53                                             | В                     | 0.31                                             | 4.3                                              | В                    | 1.7        | 3100             | JB                                               | 670         | 13000         | B              | 980            | 2.4           | U              | 2.4                  |
| 7   | SPA-12                    | J1RKM5                                 | 4/29/2013                      | 0.99          | BN                                               | 0.32          | 0.64                                             | В                     | 0.31                                             | 3.2                                              | В                    | 1.7        | 3200             | JB                                               | 690         | 3800          | JB             | 990            | 2.6           | U              | 2.6                  |
| 8   |                           |                                        |                                |               | _                                                |               |                                                  |                       |                                                  |                                                  |                      |            | 1 0200           | 1 00                                             | 000         | _ 3000        | 100            | 1 1000         | 2.0           |                | 2.6                  |
| 9   | Statistical Computation I | nput Data                              |                                |               | _                                                |               |                                                  |                       |                                                  | _                                                |                      |            |                  |                                                  |             |               |                |                |               |                |                      |
| 20  | Sample                    | Sample                                 | Sample                         | Nitrog        | en in M                                          | litrate       | Nitrogen in                                      | Nitrite               | and Nitrate                                      |                                                  | Sulfate              |            | Т                | PH - Dies                                        |             | TOU           | - Diese        | LEVT           | 1             |                |                      |
| 21  | Area                      | Number                                 | Date                           |               | ma/ka                                            |               |                                                  |                       |                                                  |                                                  |                      |            | 1 "              |                                                  | CI          | ''''          | - Diese        | I EX I         | Ar            | oclor-12       | :60                  |
| 22  | SPA-5                     | J1R645/J1R653                          | 4/8/2013                       | 1,3           | mg/kg                                            |               | 0.98                                             | mg/kg                 |                                                  | <del>                                     </del> | mg/kg                |            | +                | ug/kg                                            |             |               | ug/kg          |                |               | ug/kg          |                      |
| 23  | SPA-1                     | J1R641                                 | 4/8/2013                       | 0.99          | 1                                                |               | 0.52                                             | +                     | <del> </del>                                     | 11.7                                             | +                    |            | 4200             |                                                  |             | 6250          |                |                | 1.3           |                |                      |
| 24  | SPA-2                     | J1R642                                 | 4/8/2013                       | 1.7           | <del>                                     </del> |               | 1.4                                              | +                     | <del> </del>                                     | 6.6<br>9.9                                       | 1 -                  |            | 4500             | -                                                |             | 7000          | $\bot$         |                | 2.6           |                |                      |
| 25  | SPA-3                     | J1R643                                 | 4/8/2013                       | 3.2           | 1                                                |               | 3.1                                              | +                     | <u> </u>                                         | 36.0                                             | 1 1                  |            | 6800             | <del>                                     </del> |             | 16000         | <del></del>    | -              | 20            |                |                      |
| 26  | SPA-4                     | J1R644                                 | 4/8/2013                       | 0.90          |                                                  |               | 0.48                                             |                       | <del> </del>                                     | 5.3                                              | <del> </del>         |            | 7400<br>2200     |                                                  |             | 17000         | ——             |                | 14            |                |                      |
| ?7  | SPA-6                     | J1R646                                 | 4/8/2013                       | 1.9           | † -                                              |               | 1.8                                              | <del> </del>          |                                                  | 10.6                                             | 1                    |            | 6100             |                                                  |             | 2700          | ऻ              |                | 1.3           |                |                      |
| 8   | SPA-7                     | J1R647                                 | 4/8/2013                       | 0.94          |                                                  |               | 0.48                                             | $\top$                | <del>                                     </del> | 4.5                                              | 1                    |            | 3200             | + +                                              |             | 11000<br>4900 | +              | <del> </del>   | 3.9           | +              | <del></del>          |
| 29  | SPA-8                     | J1RKM8                                 | 4/29/2013                      | 0.96          |                                                  |               | 0.56                                             | 1                     |                                                  | 4.2                                              | 1 1                  |            | 5400             | 1                                                | <del></del> | 11000         | +              |                | 1.3           | +              | <del></del>          |
| 30  | SPA-9                     | J1RKM9                                 | 4/29/2013                      | 0.80          |                                                  |               | 0.32                                             |                       |                                                  | 3.3                                              | 1 1                  |            | 4200             |                                                  |             | 9300          | +              | <del> </del> - | 1.3<br>3.1    | +              | -                    |
| 11  | SPA-10                    | J1RKM6                                 | 4/29/2013                      | 1.5           |                                                  |               | 0.30                                             |                       |                                                  | 5.2                                              |                      |            | 6100             |                                                  |             | 13000         | 1              |                | 1.2           | +              | <del></del>          |
| 12  | SPA-11<br>SPA-12          | J1RKM7                                 | 4/29/2013                      | 0.82          |                                                  |               | 0.53                                             |                       |                                                  | 4.3                                              |                      |            | 3100             |                                                  |             | 6800          | <del>  -</del> | <del> </del>   | 14            | +              | <del> </del>         |
| 1   | Statistical Computations  | J1RKM5                                 | 4/29/2013                      | 0.99          |                                                  |               | 0.64                                             |                       |                                                  | 3.2                                              |                      |            | 3200             |                                                  |             | 3800          | _              | <del> </del>   | 1.3           | +-+            |                      |
| -   | Statistical Computations  |                                        |                                |               |                                                  |               |                                                  |                       |                                                  |                                                  |                      |            |                  |                                                  |             |               |                |                |               |                |                      |
| 5   |                           |                                        |                                | Nitrog        | en in N                                          | itrate        | Nitrogen in                                      | Nitrite               | and Nitrate                                      | İ                                                | Sulfate              |            | те               | H - Diese                                        | el          | ТРН -         | Diesel         | FYT            | Are           | oclor-12       |                      |
| ĺ   |                           |                                        |                                | Large da      | ta set (                                         | n ≥ 10).      | +                                                |                       |                                                  | Large d                                          | ata set (            | n > 10)    | +                |                                                  |             | ļ             |                |                | L             |                |                      |
| e   |                           | 050                                    | / 1101 hand a                  | lognorn       |                                                  |               | Large data                                       | set (n                | ≥ 10), use                                       |                                                  | nai and i            |            | Large data       | aset(n≥                                          | 10), use    | Large data    | set (n         | ≥ 10), use     | Large da      |                |                      |
| ٠   |                           | 33                                     | % UCL based on                 | distribution  | on rejec                                         | ted, use      |                                                  | Stat logi             |                                                  |                                                  |                      | ted, use   |                  | Stat logno                                       |             | MTCAS         | Stat logi      | normal         |               | nal and r      |                      |
|     |                           |                                        |                                | z-            | statistic                                        |               | dis                                              | stributio             | n.                                               |                                                  | -statistic           |            | di               | stribution                                       |             | dis           | stributio      | n.             | distributi    |                |                      |
| 7   |                           |                                        | N                              |               |                                                  |               | 12                                               |                       |                                                  | 12                                               |                      |            | 12               |                                                  |             | 12            |                |                | 12            | -statistic     | <del></del>          |
| 8   |                           | %                                      | < Detection limit              |               | <u> </u>                                         |               | 0%                                               |                       |                                                  | 0%                                               | 1                    |            | 0%               |                                                  |             | 0%            | <del> </del>   | <del></del>    | 50%           | +-+            |                      |
| S   |                           |                                        | Mean                           | 1.3           | ļ                                                |               | 0.93                                             |                       |                                                  | 8.7                                              |                      |            | 4700             |                                                  |             | 9063          |                |                | 5.4           | +              |                      |
| 4   |                           |                                        | andard deviation               | 0.69          | <b>↓</b>                                         |               | 0.82                                             |                       |                                                  | 9.1                                              |                      |            | 1650             |                                                  |             | 4642          | <u> </u>       |                | 6.6           | 1              |                      |
| 2   |                           | 95                                     | % UCL on mean<br>Maximum value | 1.7           |                                                  |               | 1.5                                              | ļ                     |                                                  | 13.0                                             |                      |            | 5933             |                                                  |             | 13669         | 1              | _              | 8.6           |                |                      |
| -   |                           |                                        |                                |               |                                                  |               | 3.1                                              |                       | L                                                | 36.0                                             |                      |            | 7400             |                                                  |             | 17000         |                |                | 20            |                |                      |
| 2   | Most Stringent Cleanup    | Limit for nonradion                    | uclide and RAG                 |               |                                                  |               | ŀ                                                | -                     |                                                  |                                                  |                      |            | 200000           | CVA                                              | 0 Di        | -             |                |                |               |                |                      |
| ٦   |                           |                                        | type                           | 1000          | Rive                                             | Protection    | 1000                                             | River                 | Protection                                       | 25000                                            | GW P                 | rotection  | 200000           |                                                  | & River     | 200000        |                | V & River      | 17 ug/kg      |                | V & River            |
| ار  | 14/4.0.4=                 | (mg/kg) unless of<br>3-340 3-PART TEST | therwise noted                 |               |                                                  |               |                                                  |                       | <u></u>                                          |                                                  |                      |            | ug/kg            | 101                                              | ection      | ug/kg         | Pro            | otection       |               | Pro            | otection             |
| 5   | WAC 17.                   |                                        | > Cleanup Limit?               |               |                                                  |               |                                                  |                       |                                                  |                                                  |                      |            |                  |                                                  |             |               |                |                |               |                |                      |
| 6   |                           |                                        | e Cleanup Limit?               |               | NA                                               |               |                                                  | NA NA                 |                                                  |                                                  | NA                   |            |                  | NO                                               | _           |               | NO             |                |               | NO             |                      |
| ارَ |                           | Any sample > 2)                        |                                |               | NA<br>NA                                         |               | <del>                                     </del> | NA                    |                                                  |                                                  | NA                   | _          |                  | NO                                               |             |               | NO             |                |               | NO             |                      |
|     |                           |                                        | . Steatup Link:                |               | IVA                                              |               | +                                                | NA_                   |                                                  |                                                  | NA_                  |            | <u> </u>         | NO                                               |             | ļ             | NO             |                |               | NO             |                      |
| ļ   |                           |                                        |                                | Because all   | values                                           | are below     | Because al                                       | Lvalues               | ara beleu:                                       | Descripe                                         | دامیدا               | aua b -1 - |                  |                                                  |             | 1             |                |                |               |                |                      |
| ا   | 1A/ A C 47                | 2 240 Camattana                        |                                | background    | (11.8)                                           | na/ka) the    | background                                       | ı vaiue\$<br>1/11 Ω • | ma/kal the                                       | Because a                                        |                      |            | The data se      | et meets t                                       | he 3-part   | The data se   | t meets        | the 3-part     | The data se   | t meets        | the 3-par            |
| 이   | WAC 17                    | 3-340 Compliance?                      |                                | WAC 173-34    | 0 3-pai                                          | t test is not | WAC 173-34                                       | 40 3-nai              | t teet is not                                    | backgroun<br>WAC 173                             | u (23/ 11<br>340 2 ~ | ig/kg) the | test criteria    |                                                  |             | test criteria |                |                | test criteria |                |                      |
| -   |                           |                                        |                                | re            | equired.                                         | 1101          |                                                  | 40 3-par<br>emired    |                                                  |                                                  | 340 3-pa             |            | the most         |                                                  |             | the most      |                |                |               |                | nipareu i<br>nt RAG. |

Washington Closure Hanford Originator N. K. Schiffern Date 07/01/13 Calc. No. 0100D-CA-V0508 Rev. No. Project 100-D Field Remediation 14655 Checked J. D. Skoglie 07/01/13 Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations 15 of 24 1 100-D-77, 100-D-62, and 100-D-83:1 Maximum Calculations 2 Verification Data -Staging Pile Area (SPA) Benzo(a)anthracene (Method Benzo(b)fluoranthene (Method Benzo(ghi)perylene (Method enzo(k)fluoranthene (Metho Antimony Boron Benzo(a)pyrene (Method 8310) Chrysene (Method 8310) 8310) 8310) Area Number Date Q PQL mg/kg Q PQL Q PQL ug/kg ug/kg PQL PQL ug/kg PQL Q Q ug/kg Q ug/kg Q PQL ug/kg Q PQL SPA-5 J1R645 4/8/2013 U 0.35 0.90 0.90 U 3.1 6.2 4.1 4.1 3.8 Duplicate of J1R645 J1R653 4/8/2013 0.34 0.89 U 0.89 U 3.1 6.2 U 6.2 4.1 4.1 U 3.8 SPA-1 J1R641 4/8/2013 0.34 0.34 0.92 BN 0.87 3.2 υ 3.2 6.4 U 6.4 4.2 U 4.2 7.2 4.8 3.9 U 3.9 4.8 U SPA-2 J1R642 4/8/2013 0.35 U 0.35 1.2 0.91 23 29 15 7.4 Х 4.3 JX 8.6 4.0 20 4.9 SPA-3 J1R643 4/8/2013 0.34 0.34 6.7 6.7 4.8 3.3 U 4.4 7.5 4.1 Ü 4.1 SPA-4 .l1R644 4/8/2013 U 0.39 1.0 3.1 U 6.2 υ 3.1 U 6.2 4.1 4.1 7.0 3.8 SPA-6 J1R646 4/8/2013 0.39 0.39 1.0 1.0 18 3.3 33 33 4.3 7.4 9.0 4.0 28 5.0 SPA-7 J1R647 4/8/2013 0.36 0.36 0.94 0.94 U U 3.1 6.3 6.3 4.1 4.1 7.1 3.9 U 3.9 4.8 4.8 SPA-8 J1RKM8 4/29/2013 0.51 В 0.34 0.89 U 0.80 3.2 6.5 U 4.3 4.3 7.3 7.3 U 4.0 U 40 4.9 U 4.9 SPA-9 J1RKM9 4/29/2013 0.54 0.34 0.89 0.89 3.2 6.4 U 6.4 4.2 4.2 7.2 U 7.2 3.9 U 3.9 U 48 SPA-10 J1RKM6 4/29/2013 0.57 В 0.37 0.97 U 0.97 3.2 U 6.4 3.2 U 6.4 4.2 4.2 U 7.1 3.9 4.8 3.9 4.8 SPA-11 J1RKM7 4/29/2013 0.53 В 0.36 0.94 0.94 3.2 3.2 6.3 6.3 4.2 4.2 7.1 7.1 U 3.9 4.8 U 3.9 SPA-12 J1RKM5 4/29/2013 0.87 0.36 0.93 U 0.93 3.2 6.4 6.4 4.2 3.9 5.0 tatistical Computations Benzo(a)anthracene (Method Benzo(b)fluoranthene (Method Benzo(ghi)perylene (Method Benzo(k)fluoranthene (Metho Antimony Boron Benzo(a)pyrene (Method 8310) Chrysene (Method 8310) 8310) % < Detection limit 58% 75% 83% 75% 83% 83% 67% Maximum value 1.2 18 33 33 25 9.0 28 Most Stringent Cleanup Limit for nonradio nuclide and GW & River GW & River GW & River GW & River GW & River RAG type 320 **GW Protection** 15 ug/kg 15 ua/ka 15 ug/kg 18000 ug/kg GW Protection 15 ug/kg 100 ug/kg River Protection Protection Protection Protection (mg/kg) unless otherwise noted 3-PART TEST Protection Maximum > Cleanup Limit? NO YES YES NO NO NO > 10% above Cleanup Limit? NA NO YE\$ YES YES NO NO NO Any sample > 2X Cleanup Limit? NA NO NO YES NO Because all values are below A detailed assessment will be A detailed assessment will be A detailed assessment will be The data set meets the 3-part The data set meets the 3-part The data set meets the 3-part The data set meets the 3-par background (5 mg/kg) the WAC performed. The data set meets the erformed. The data set meets the performed. The data set meets the 3-Part Test Compliance? test criteria when compared to test criteria when compared to test criteria when compared to test criteria when compared to 173-340 3-part test is not 3-part test criteria when compared part test criteria when compared to 3-part test criteria when compared the most stringent RAG. the most stringent RAG. the most stringent RAG. the most stringent RAG. required. to the direct exposure RAG. the direct exposure RAG. to the direct exposure RAG. Indeno(1,2,3-cd)pyrene Benzo(a)anthracene (method Sample Sample Sample Fluoranthene (Method 8310) enzo(b)fluoranthene (method Benzo(ghi)perylene (method Pyrene (Method 8310) Benzo(a)pyrene (method 8270) Chrysene (method 8270) (Method 8310) 8270) 8270) Area Number ug/kg ug/kg Q PQL ug/kg O Q ug/kg a ug/kg Q Q PQL PQL ug/kg Q PQL ug/kg SPA-5 J1R645 4/8/2013 U 12 21 21 27 LI 27 16 U 28 Duplicate of J1R645 J1R653 4/8/2013 13 13 U 12 12 U 20 U 20 27 U 27 16 U U J1R641 4/8/2013 13 U 13 12 U 20 U 20 20 U 20 26 U 26 SPA-2 J113642 4/8/2013 39 13 36 31 20 JX 27 SPA-3 J1R643 4/8/2013 14 13 U 13 14 25 21 21 JX SPA-4 J1R644 4/8/2013 13 U 13 12 U 12 12 20 20 20 U 26 16 U U SPA-6 4/8/2013 13 J 12 60 33 JX 20 U 45 SPA-7 J1R647 4/8/2013 13 U 20 20 20 U 20 26 U 26 SPA-8 J1RKM8 4/29/2013 13 20 20 20 U 20 U SPA-9 J1RKM9 4/29/2013 13 U 13 U 12 19 19 15 15 U 26 SPA-10 J1RKM6 4/29/2013 11 U 13 12 20 20 20 20 U 16 u 27 16 27 SPA-11 4/29/2013 13 12 U 12 12 U 12 20 20 u 16 U 16 27 U SPA-12 J1RKM5 4/29/2013 IJ 12 19 19 25 U 26 U 44 Statistical Computations Indeno(1,2,3-cd)pyrene Benzo(a)anthracene (method Fluoranthene (Method 8310) enzo(b)fluoranthene (method Benzo(ghi)perylene (method Pyrene (Method 8310) Benzo(a)pyrene (method 8270) Chrysene (method 8270) (Method 8310) 8270) 8270) 8270) % < Detection lim 83% 83% 75% 75% 83% 92% Maximum value 45 Most Stringent Cleanup Limit for nonradionuclide and GW & River GW & Rive GW & River RAG type GW & River 18000 River Protection 15 48000 **GW Protection** 330 330 330 48000 **GW Protection** River Protection 330 Protection Protection Protection 3-PART TEST Maximum > Cleanup Limit? NO NO > 10% above Cleanup Limit? NO YES NO NO NO NO NO Any sample > 2X Cleanup Limit? NO NO ÑO detailed assessment will be The data set meets the 3-part performed. The data set meets The data set meets the 3-part test The data set meets the 3-part test The data set meets the 3-part test The data set meets the 3-part The data set meets the 3-par test criteria when compared to 3-Part Test Compliance? the 3-part test criteria when criteria when compared to the most criteria when compared to the most criteria when compared to the most test criteria when compared to test criteria when compared to test criteria when compared to the most stringent RAG. compared to the direct exposure stringent RAG. stringent RAG. stringent RAG. the most stringent RAG. the most stringent RAG. the most stringent RAG. RAG. 54 Qualifiers are defined on page 3.

| Washington Closure Hanford |
|----------------------------|
|----------------------------|

Originator N. K. Schiffern W
Project 100-D Field Remediation

Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations

Date 07/01/13 Job No. 14655 
 Calc. No.
 0100D-CA-V0508

 Checked
 J. D. Skoglie

 Rev. No.
 0

 Date
 07/01/13

 Sheet No.
 16 of 24

1 100-D-77, 100-D-62, and 100-D-83:1 Maximum Calculations

2 Verification Data - Staging Pile Area (SPA)

| 3    | Sample              | Sample | Sample    | Fluoranthe | ne (metl | nod 8270) | Phenanthr | ene (mei | thod 8270) | Pyren | e (method | 8270) |
|------|---------------------|--------|-----------|------------|----------|-----------|-----------|----------|------------|-------|-----------|-------|
| 4    | <u>Area</u>         | Number | Date      | ug/kg      | Q        | PQL       | ug/kg     | Q        | PQL        | ug/kg | Q         | PQL   |
| 5    | SPA-5               | J1R645 | 4/8/2013  | 37         | U        | 37        | 17        | U        | 17         | 12    | U         | 12    |
| 6    | Duplicate of J1R645 | J1R653 | 4/8/2013  | 37         | U        | 37        | 17        | U        | 17         | 12    | U         | 12    |
| 7[   | SPA-1               | J1R641 | 4/8/2013  | 36         | U        | 36        | 17        | U        | 17         | 12    | U         | 12    |
| 8    | SPA-2               | J1R642 | 4/8/2013  | 61         | J        | 37        | 22        | J        | 17         | 59    | J         | 12    |
| 9    | SPA-3               | J1R643 | 4/8/2013  | 44         | J        | 38        | 22        | J        | 18         | 39    | J         | 13    |
| 10[  | SPA-4               | J1R644 | 4/8/2013  | 36         | U        | 36        | 17        | U        | 17         | 12    | U         | 12    |
| 11 [ | SPA-6               | J1R646 | 4/8/2013  | 56         | J        | 36        | 21        | J        | 17         | 66    | J         | 12    |
| 2    | SPA-7               | J1R647 | 4/8/2013  | 36         | U        | 36        | 17        | U        | 17         | 12    | U         | 12    |
| 13[  | SPA-8               | J1RKM8 | 4/29/2013 | 36         | U        | 36        | 17        | U        | 17         | 12    | U         | 12    |
| 4    | SPA-9               | J1RKM9 | 4/29/2013 | 35         | U        | 35        | 16        | U        | 16         | 12    | U         | 12    |
| 15[  | SPA-10              | J1RKM6 | 4/29/2013 | 36         | U        | 36        | 17        | U        | 17         | 12    | Ū         | 12    |
| 16   | SPA-11              | J1RKM7 | 4/29/2013 | 35         | U        | 35        | 17        | U        | 17         | 12    | Ū         | 12    |
| 7    | SPA-12              | J1RKM5 | 4/29/2013 | 35         | U        | 35        | 17        | Ū        | 17         | 12    | T U       | 12    |

| 18 | Statistical Computations                             |                                          |         |            |               |                                                             |               |                                                       |        |
|----|------------------------------------------------------|------------------------------------------|---------|------------|---------------|-------------------------------------------------------------|---------------|-------------------------------------------------------|--------|
| 19 |                                                      | Fluoranthe                               | ne (met | hod 8270)  | Phenanthro    | ene (method 8270)                                           | Pyren         | e (method 827                                         | 0)     |
| 20 | % < Detection limit                                  | 75%                                      |         |            | 75%           |                                                             | 75%           |                                                       |        |
| 21 | Maximum value                                        |                                          |         |            | 22            |                                                             | 66            |                                                       |        |
|    | Most Stringent Cleanup Limit for nonradionuclide and |                                          |         |            |               |                                                             |               | · · ·                                                 |        |
| 22 | RAG type                                             | 18000                                    | Rive    | Protection | 240000        | <b>GW Protection</b>                                        | 48000         | GW Prote                                              | ection |
|    | (ug/kg)                                              |                                          |         |            |               |                                                             |               |                                                       |        |
| 23 | 3-PART TEST                                          | _                                        |         |            |               |                                                             |               |                                                       |        |
| 24 | Maximum > Cleanup Limit?                             |                                          | NO      |            |               | NO                                                          |               | NO                                                    |        |
| 25 | > 10% above Cleanup Limit?                           |                                          | NO      |            |               | NO                                                          |               | NO                                                    |        |
| 26 | Any sample > 2X Cleanup Limit?                       |                                          | NO      |            |               | NO                                                          |               | NO                                                    |        |
| 27 | 3-Part Test Compliance?                              | The data se<br>test criteria<br>the most | when co | mpared to  | test criteria | et meets the 3-part<br>when compared to<br>t stringent RAG. | criteria wher | et meets the 3-p<br>n compared to the<br>ringent RAG. |        |

Washington Closure Hanford
Originator N. K. Schiffern
Project 100-D Field Remediation
Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations

Date 07/01/13 Job No. 14655 Rev. No. 0
Date 07/01/13
Sheet No. 17 of 24

|          |                  |                        |                               |                      |      |           |                                        |                                  |           |        |             | ,                            | Sheet No              | JI 24  |
|----------|------------------|------------------------|-------------------------------|----------------------|------|-----------|----------------------------------------|----------------------------------|-----------|--------|-------------|------------------------------|-----------------------|--------|
| 1        |                  |                        |                               |                      |      | Ecology S | Software (MTCAStat) Results, 100-D-77, | 100-D-62, and 100-D-83:1 Excaval | tion (EXC | )      |             |                              |                       |        |
| 1        | DATA             | ID                     | Arsenic 95%                   | UCL Calculation      |      | DATA      |                                        | 6 UCL Calculation                |           | DATA   | ID          | Rendium 95                   | % UCL Calculation     |        |
| 2        | 3.6              | J1PW83/J               | 1PW93                         |                      |      | 62.3      | J1PW83/J1PW93                          |                                  |           | 0.27   | J1PW83/J1P  | W93                          | % OCL Calculation     |        |
| 3        | 3.6              | J1PW81                 |                               |                      |      | 65.4      | J1PW81                                 |                                  |           | 0.34   | J1PW81      |                              |                       |        |
| 4        | 2.2              | J1PW82                 | Number of samples             | Uncensored values    |      | 73.0      | J1PW82 Number of samples               | Uncensored values                |           | 0.27   | J1PW82      | Number of samples            | Uncensored values     |        |
| 5        | 1.2              | J1RJ77                 |                               | 12 Mean              | 2.4  | 46.8      | J1RJ77 Uncensored                      |                                  | 60.0      | 0.53   | J1RJ77      | Uncensored                   |                       |        |
| 6        | 3.1              | J1PW85                 | Censored                      | Lognormal mean       | 2.5  | 68.3      | J1PW85 Censored                        | Lognormal mean                   | 60.1      | 0.34   | J1PW85      | Censored                     | Lognormal mear        |        |
| 7        | 2.6              | J1PW86                 | Detection limit or PQL        | Std. devn.           | 0.70 | 73.7      | J1PW86 Detection limit or PQL          | Std. devn.                       | 9.7       | 0.33   | J1PW86      | Detection limit or PQL       | Std. devn.            |        |
| 8        | 2.3              | J1PW87                 | Method detection limit        | Median               | 2.3  | 60.4      | J1PW87 Method detection limit          | Median                           | 61.4      | 0.32   | J1PW87      | Method detection limit       | Mediar                |        |
| 9        | 1.9              | J1PW88                 | TOTAL                         | 12 Min.              | 1.2  | 42.1      | J1PW88 TOTAL                           |                                  | 42.1      | 0.33   | J1PW88      | TOTAL                        |                       |        |
| 10       | 2.3              | J1PW89                 |                               | Max.                 | 3.6  | 55.2      | J1PW89                                 | Max.                             | 73.7      | 0.35   | J1PW89      | TOTAL                        | Max.                  |        |
| 11       | 2.5              | J1PW90                 |                               |                      |      | 56.7      | J1PW90                                 | · · ·                            |           | 0.37   | J1PW90      |                              | iviax.                | . 0.53 |
| 12       | 1.9              | J1PW91                 |                               |                      |      | 53.3      | J1PW91                                 |                                  |           | 0.32   | J1PW91      |                              |                       |        |
| 13       | 2.2              | J1PW92                 |                               |                      |      | 62.8      | J1PW92                                 |                                  |           | 0.26   | J1PW92      |                              |                       |        |
| 14       |                  |                        |                               |                      |      |           |                                        |                                  |           | 0.20   | 011 1102    |                              |                       |        |
| 15       |                  |                        | Lognormal distribution?       | Normal distribution? |      |           | Lognormal distribution?                | Normal distribution?             |           |        | La          | gnormal distribution?        | Normal distribution?  |        |
| 16       |                  |                        | r-squared is: 0.922           | r-squared is: 0.939  |      | l         | r-squared is: 0.957                    | r-squared is: 0.978              |           |        |             | equared is: 0.835            | r-squared is: 0.754   |        |
| 17       |                  |                        | Recommendations:              |                      |      | Į         | Recommendations:                       | •                                |           |        |             | ecommendations:              | 1-3quareu is. 0.734   |        |
| 18       |                  |                        | Use lognormal distribution.   |                      |      | İ         | Use lognormal distribution.            |                                  |           |        |             | eject BOTH lognormal and     | normal distributions  |        |
| 19<br>20 |                  |                        | 1101 (1 and 1 4 4)            |                      |      | l         |                                        |                                  |           |        |             | -,and                        | normal distributions. |        |
| _        | DATA             |                        | UCL (Land's method) is        | 2.9                  |      |           | UCL (Land's method) is                 | 66.0                             |           |        | UC          | CL (based on Z-statistic) is | 0.37                  |        |
| 21<br>22 | <b>DATA</b> 13.2 | <b>ID</b><br>J1PW83/J1 |                               | 6 UCL Calculation    |      | DATA      | ID Cobalt 95%                          | UCL Calculation                  |           | DATA   | ID          |                              | UCL Calculation       |        |
| 23       | 11.1             | J1PW83/J1<br>J1PW81    | 174493                        |                      |      | 6.1       | J1PW83/J1PW93                          |                                  |           | 14.1   | J1PW83/J1PV |                              |                       |        |
| 24       | 8.3              | J1PW81<br>J1PW82       | Number of second              | 116                  |      | 7.9       | J1PW81                                 |                                  |           | 17.9   | J1PW81      |                              |                       |        |
| 25       | 4.8              | J1RV62<br>J1RJ77       | Number of samples             | Uncensored values    |      | 7.8       | J1PW82 Number of samples               | Uncensored values                |           | 15.5   | J1PW82      | Number of samples            | Uncensored values     |        |
| 26       | 8.2              | J1PW85                 |                               | 12 Mean              | 7.7  | 10.8      | J1RJ77 Uncensored                      | 12 Mean                          | 9.2       | 14.0   | J1RJ77      | •                            | 12 Mean               |        |
| 27       | 8.5              | J1PW86                 | Censored                      | Lognormal mean       | 7.7  | 9.6       | J1PW85 Censored                        | Lognormal mean                   | 9.3       | 16.3   | J1PW85      | Censored                     | Lognormal mean        |        |
| 28       | 7.1              | J1PW87                 | Detection limit or PQL        | Std. devn.           | 2.4  | 9.5       | J1PW86 Detection limit or PQL          | Std. devn.                       | 1.6       | 14.5   | J1PW86      | Detection limit or PQL       | Std. devn.            |        |
| 29       | 5.3              | J1PW88                 | Method detection limit        | Median               | 7.0  | 9.7       | J1PW87 Method detection limit          | Median                           | 9.7       | 15.7   | J1PW87      | Method detection limit       | Median                |        |
| 30       | 6.9              | J1PW89                 | TOTAL                         |                      | 4.8  | 10.8      | J1PW88 TOTAL                           | 12 Min.                          | 6.1       | 15.2   | J1PW88      | TOTAL                        | 12 Min.               | 14.0   |
| 31       | 6.2              | J1PW90                 |                               | Max.                 | 13.2 | 10.3      | J1PW89                                 | Max.                             | 10.8      | 16.2   | J1PW89      |                              | Max.                  |        |
| 32       | 5.9              | J1PW91                 |                               |                      | l    | 10.8      | J1PW90                                 |                                  |           | 16.8   | J1PW90      |                              |                       |        |
| 33       | 6.8              | J1PW92                 |                               |                      |      | 10.6      | J1PW91                                 |                                  |           | 14.9   | J1PW91      |                              |                       |        |
| 34       | 0.0              | 011 1132               |                               |                      | - 1  | 6.9       | J1PW92                                 |                                  |           | 16.2   | J1PW92      |                              |                       |        |
| 35       |                  |                        | Lognormal distribution?       | Normal distribution? | 1    |           |                                        |                                  |           |        |             |                              |                       |        |
| 36       |                  |                        | r-squared is: 0.962           | r-squared is: 0.892  | i    |           | Lognormal distribution?                | Normal distribution?             | i         |        | Lo          | gnormal distribution?        | Normal distribution?  |        |
| 37       |                  |                        | Recommendations:              | 1-5quareu is. 0.092  | j    |           | r-squared is: 0.856                    | r-squared is: 0.880              |           |        | r-se        | quared is: 0.974             | r-squared is: 0.969   |        |
| 38       |                  |                        | Use lognormal distribution.   |                      | i    |           | Recommendations:                       |                                  |           |        | Re          | commendations:               |                       |        |
| 39       |                  |                        | occ logilormal distribution.  |                      | 1    |           | Reject BOTH lognormal and n            | ormal distributions.             |           |        | Us          | e lognormal distribution.    | •                     |        |
| 40       |                  |                        | UCL (Land's method) is        | 9.1                  | - 1  |           | UCL (based on Z-statistic) is          | 10.0                             |           |        | ·           | CL (Land's method) is        | 16.2                  |        |
|          | DATA             | ID                     | Lead 95% U                    | CL Calculation       |      | DATA      |                                        | % UCL Calculation                |           | DATA   | ID S        |                              | UCL Calculation       |        |
| 42       |                  | J1PW83/J1              | PW93                          |                      | l    | 288       | J1PW83/J1PW93                          | <del></del>                      |           |        | J1PW83/J1PV |                              | JOE Valculation       |        |
| 43       | 18.5             | J1PW81                 |                               |                      | ŀ    | 330       | J1PW81                                 |                                  | 1         | 0.14   | J1PW81      |                              |                       |        |
| 44<br>45 | 7.4              | J1PW82                 | Number of samples             | Uncensored values    |      | 305       | J1PW82 Number of samples               | Uncensored values                | 1         | 0.075  | J1PW82      | Number of samples            | Uncensored values     |        |
| 45       | 2.2              | J1RJ77                 |                               | 12 Mean              | 5.7  | 323       | J1RJ77 Uncensored                      |                                  | 318       | 0.013  | J1RJ77      | •                            | 12 Mean               | 0.035  |
| 40       | 9.1              | J1PW85                 | Censored                      | Lognormal mean       | 5.6  | 321       | J1PW85 Censored                        | Lognormal mean                   | 318       | 0.092  | J1PW85      | Censored                     | Lognormal mean        |        |
| 77       | 4.1              | J1PW86                 | Detection limit or PQL        | Std. devn.           | 4.4  | 320       | J1PW86 Detection limit or PQL          | Std. devn.                       | 28.0      | 0.022  | J1PW86      | Detection limit or PQL       | Std. devn.            |        |
| 48       | 3.3              | J1PW87                 | Method detection limit        | Median               | 4.0  | 305       | J1PW87 Method detection limit          | Median                           | 321       | 0.0055 | J1PW87      | Method detection limit       | Median                | •      |
| 49       | 3.3<br>4.6       | J1PW88                 | TOTAL                         | ,                    | 2.2  | 324       | J1PW88 TOTAL                           |                                  | 271       | 0.0062 | J1PW88      | TOTAL                        |                       | 0.017  |
| 50<br>51 | 4.6<br>4.6       | J1PW89<br>J1PW90       |                               | Max.                 | 18.5 | 318       | J1PW89                                 | Max.                             | 388       | 0.027  | J1PW89      |                              | Max.                  | 0.0032 |
| 52       | 3.8              | J1PW90<br>J1PW91       |                               |                      | ł    | 388       | J1PW90                                 |                                  | 1         | 0.0089 | J1PW90      |                              | ·                     |        |
|          | 3.9              | J1PW91<br>J1PW92       |                               |                      | J    | 322       | J1PW91                                 |                                  | I         | 0.0032 | J1PW91      |                              |                       |        |
| 53<br>54 | 3.9              | JIF W92                |                               |                      | 1    | 271       | J1PW92                                 |                                  | i         | 0.020  | J1PW92      |                              |                       |        |
| 55       |                  | 1                      | Lognormal distribution?       | Normal distribution? | 1    |           | Lognormal diskdhidi                    | Manual Paris as a                | -         |        | -           |                              |                       |        |
| 56       |                  |                        | r-squared is: 0.854           | r-squared is: 0.640  | 1    |           | Lognormal distribution?                | Normal distribution?             |           |        | Log         | gnormal distribution?        | Normal distribution?  | I      |
| 57       |                  |                        | Recommendations:              | 1-34ua16u 15. U.04U  | l    |           | r-squared is: 0.849                    | r-squared is: 0.824              | - 1       |        | r-so        | quared is: 0.956             | r-squared is: 0.734   | ļ      |
| 58       |                  |                        | Reject BOTH lognormal and nor | mal distributions    | - 1  |           | Recommendations:                       | and all ability at a second      |           |        |             | commendations:               |                       | 1      |
| 59       |                  | ·                      | -, and not                    | aloutouto.           | - 1  |           | Reject BOTH lognormal and no           | ormai distributions.             | l         |        | Use         | e lognormal distribution.    |                       | į      |
| 60       |                  | Į                      | JCL (based on Z-statistic) is | 7.8                  | - 1  |           | UCL (based on Z-statistic) is          | 224                              | ı         |        |             |                              |                       | ı      |
|          | ualifiers        | are defined            |                               | ,                    | 1    |           | OOL (Dased On Z-Statistic) is          | 331                              |           |        | UC          | L (Land's method) is         | 0.12                  |        |
|          |                  |                        | page 0.                       |                      |      |           |                                        |                                  |           |        |             |                              |                       |        |

Washington Closure Hanford

Originator Ν. Κ. Schiffern

Project 100-D Field Remediation

Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations Calc. No. 0100D-CA-V0508
Checked J. D. Skoglie Date \_\_\_\_ 07/01/13 Rev. No. Job No. 14655 07/01/13 Date \_

| `        | ,            | <u> </u>           | 100 B 02, and 100-B-03.1 Wa          | ste Sites Cleanup Verification 95% ( | JCL Calcu    | lations      | _                                                |                                 |              |              |                  | 00                                            | Sheet No 18 0                   | of 24   |
|----------|--------------|--------------------|--------------------------------------|--------------------------------------|--------------|--------------|--------------------------------------------------|---------------------------------|--------------|--------------|------------------|-----------------------------------------------|---------------------------------|---------|
| _        |              |                    |                                      |                                      |              | Ecology S    | Software (MTCAStat) Results, 100-D-77,           | 100-D-62, and 100-D-83:1 Excava | tion (EXC)   | ,            |                  |                                               |                                 |         |
|          | DATA         | ID                 | Molybdenum 9                         | 95% UCL Calculation                  |              | DATA         |                                                  | UCL Calculation                 |              | DATA         | ID               | Vanadium 95°                                  | 6 UCL Calculation               |         |
| 2        | 0.19         | J1PW83/J           | J1PW93                               |                                      |              | 12.6         | J1PW83/J1PW93                                    |                                 |              | 41.0         | J1PW83/J         |                                               | o ool calculation               |         |
| 3 4      | 0.60         | J1PW81             | Monte de la                          |                                      |              | 13.1         | J1PW81                                           |                                 |              | 54.9         | J1PW81           |                                               |                                 |         |
| 5        | 0.54<br>0.38 | J1PW82<br>J1RJ77   |                                      | Uncensored values                    |              | 11.9         | J1PW82 Number of samples                         | Uncensored values               |              | 65.0         | J1PW82           | Number of samples                             | Uncensored values               | s       |
| 6        | 0.38         | J1PW85             | Uncensored                           | 12 Mean                              | 0.35         | 10.0         | J1RJ77 Uncensored                                | 12 Mean                         | 12.4         | 75.3         | J1RJ77           | Uncensored                                    | 12 Mear                         | n 69.0  |
| 7        | 0.46         | J1PW86             | Censored Detection limit or PQL      | Lognormal mean                       | 0.35         | 12.2         | J1PW85 Censored                                  | Lognormal mean                  | 12.4         | 71.8         | J1PW85           | Censored                                      | Lognormal mear                  | n 69.2  |
| 8        | 0.29         | J1PW87             | Method detection limit               | Std. devn.<br>Median                 | 0.12<br>0.31 | 14.7<br>12.5 | J1PW86 Detection limit or PQL                    | Std. devn.                      | 1.5          | 71.6         | J1PW86           | Detection limit or PQL                        | Std. devn                       |         |
| 9        | 0.33         | J1PW88             | TOTAL                                | 12 Min.                              | 0.19         | 11.0         | J1PW87 Method detection limit<br>J1PW88 TOTAL    | Median                          | 12.4         | 71.2         | J1PW87           | Method detection limit                        | Mediar                          |         |
| 10       | 0.26         | J1PW89             |                                      | Max.                                 | 0.60         | 12.1         | J1PW88 TOTAL<br>J1PW89                           |                                 | 10.0<br>14.7 | 84.8         | J1PW88           | TOTAL                                         | _                               |         |
| 11       | 0.27         | J1PW90             |                                      | max.                                 | 0.00         | 14.5         | J1PW90                                           | Max.                            | 14.7         | 73.9<br>75.0 | J1PW89           |                                               | Max                             | . 85.4  |
| 12       | 0.31         | J1PW91             |                                      |                                      |              | 13.5         | J1PW91                                           |                                 |              | 75.0<br>85.4 | J1PW90<br>J1PW91 |                                               |                                 |         |
| 13       | 0.28         | J1PW92             |                                      |                                      |              | 10.3         | J1PW92                                           |                                 |              | 58.0         | J1PW91           |                                               |                                 |         |
| 14       |              |                    |                                      |                                      |              | 1            |                                                  |                                 |              | 30.0         | 011 W32          |                                               |                                 |         |
| 15       |              |                    | Lognormal distribution?              | Normal distribution?                 |              |              | Lognormal distribution?                          | Normal distribution?            |              |              |                  | Lognormal distribution?                       | Normal distribution?            |         |
| 16       |              |                    | r-squared is: 0.942                  | r-squared is: 0.890                  |              | 1            | r-squared is: 0.969                              | r-squared is: 0.974             |              |              |                  | r-squared is: 0.855                           | r-squared is: 0.912             |         |
| 17<br>18 |              |                    | Recommendations:                     |                                      |              | l            | Recommendations:                                 |                                 |              |              |                  | Recommendations:                              |                                 |         |
| 19       |              |                    | Use lognormal distribution,          |                                      |              | · ·          | Use lognormal distribution.                      |                                 |              |              |                  | Use normal distribution.                      |                                 |         |
| 20       |              |                    | UCL (Land's method) is               | 0.43                                 |              | i            |                                                  |                                 |              |              |                  |                                               |                                 |         |
|          | DATA         | iD                 | <u>-</u>                             | UCL Calculation                      |              | DATA         | UCL (Land's method) is  Nitrogen in Nitrat       | 13.2                            |              |              |                  | UCL (based on t-statistic) is                 | 75.5                            |         |
| 22       | 34.9         | J1PW83/J           |                                      | JOE GAIGHANNI                        |              | 0.62         | J1PW83/J1PW93                                    | e 95% UCL Calculation           |              | DATA         | ID               |                                               | and Nitrate 95% UCL Calculation | on      |
| 23       | 65.7         | J1PW81             |                                      |                                      |              | 0.77         | J1PW81                                           |                                 |              | 1.3          | J1PW83/J         | 1PW93                                         |                                 |         |
| 24       | 48.8         | J1PW82             | Number of samples                    | Uncensored values                    |              | 2.6          | J1PW82 Number of samples                         | Uncensored values               |              | 1.6<br>3.3   | J1PW81           | Number of semales                             | I to a second continue          | _       |
| 25       | 47.4         | J1RJ77             | Uncensored                           |                                      | 46.2         | 0.71         | J1RJ77 Uncensored                                |                                 | 0.92         | 0.15         | J1PW82<br>J1RJ77 | Number of samples                             | Uncensored values               | -       |
| 26       | 53.5         | J1PW85             | Censored                             | Lognormal mean                       | 46.2         | 1.0          | J1PW85 Censored                                  | Lognormal mean                  | 0.95         | 7.8          | J1PW85           | Uncensored<br>Censored                        | 12 Mear<br>Lognormal mear       |         |
| 27       | 42.9         | J1PW86             | Detection limit or PQL               | Std. devn.                           | 7.7          | 0.95         | J1PW86 Detection limit or PQL                    | Std. devn.                      | 0.65         | 1.4          | J1PW86           | Detection limit or PQL                        | Std. devn                       |         |
|          | 41.5         | J1PW87             | Method detection limit               | Median                               | 45.0         | 0.84         | J1PW87 Method detection limit                    | Median                          | 0.74         | 1.3          | J1PW87           | Method detection limit                        | Mediar                          |         |
| 29       | 44.6         | J1PW88             | TOTAL                                | 12 Min.                              | 34.9         | 0.49         |                                                  | 12 Min.                         | 0.15         | 1.0          | J1PW88           |                                               | 12 Min                          |         |
| 30<br>31 | 44.7<br>45.2 | J1PW89<br>J1PW90   |                                      | Max.                                 | 65.7         | 0.58         | J1PW89                                           | Max.                            | 2.6          | 1.1          | J1PW89           |                                               | Max                             |         |
|          | 45.3         | J1PW90             |                                      |                                      |              | 0.57         | J1PW90                                           |                                 |              | 1.2          | J1PW90           |                                               |                                 |         |
|          | 39.6         | J1PW92             |                                      |                                      |              | 0.15         | J1PW91                                           |                                 |              | 1.2          | J1PW91           |                                               |                                 |         |
| 34       | 00.0         | 011 1102           |                                      |                                      |              | 1.7          | J1PW92                                           |                                 | ı            | 2.6          | J1PW92           |                                               |                                 |         |
| 35       |              |                    | Lognormal distribution?              | Normal distribution?                 |              |              | Lognormal distribution?                          | Normal distribution?            |              |              |                  |                                               |                                 |         |
| 36       |              |                    | r-squared is: 0.910                  | r-squared is: 0.857                  |              |              | r-squared is: 0.897                              | r-squared is: 0.781             |              |              |                  | Lognormal distribution?                       | Normal distribution?            |         |
| 37       |              |                    | Recommendations:                     | ,                                    |              |              | Recommendations:                                 | 1-squared is. 0.701             |              |              |                  | r-squared is: 0.819 Recommendations:          | r-squared is: 0.633             |         |
| 38       |              |                    | Use lognormal distribution.          |                                      |              |              | Reject BOTH lognormal and n                      | ormal distributions             | I            |              |                  | Reject BOTH lognormal and r                   | normal distributions            |         |
| 39       |              |                    | _                                    |                                      |              |              | .,                                               |                                 |              |              |                  | reject botti logiloillai and i                | orna distributions.             |         |
| 40       |              |                    | UCL (Land's method) is               | 50.3                                 |              |              | UCL (based on Z-statistic) is                    | 1.2                             |              |              |                  | UCL (based on Z-statistic) is                 | 2.9                             |         |
|          | DATA         | ID<br>IdDN/80/1    |                                      | 95% UCL Calculation                  |              | DATA         |                                                  | sel 95% UCL Calculation         |              | DATA         | ID               |                                               | EXT 95% UCL Calculation         |         |
|          | 0.83<br>0.85 | J1PW83/J<br>J1PW81 | 154493                               |                                      |              | 13500        | J1PW83/J1PW93                                    |                                 | ļ            | 17950        | J1PW83/J1        |                                               | · · · · · · · · · · · · ·       |         |
| - 1      | 81.7         | J1PW82             | Number of samples                    | Incorpored velves                    |              | 1800         | J1PW81                                           |                                 |              | 6300         | J1PW81           |                                               |                                 |         |
| 45       | 9.7          | J1RJ77             | Uncensored                           | Uncensored values 12 Mean            | 16.7         | 1900         | J1PW82 Number of samples                         | Uncensored values               |              | 4600         | J1PW82           | Number of samples                             | Uncensored values               |         |
|          | 34.3         | J1PW85             | Censored                             | Lognormal mean                       | 23.1         | 4100<br>5300 |                                                  | 12 Mean                         | 2828         | 5400         | J1RJ77           | Uncensored                                    |                                 |         |
|          | 51.5         | J1PW86             | Detection limit or PQL               | Std. devn.                           | 26.0         | 2200         | J1PW85 Censored<br>J1PW86 Detection limit or PQL | Lognormal mean                  | 2907         | 16000        | J1PW85           | Censored                                      | Lognormal mean                  |         |
| 48       | 9.9          | J1PW87             | Method detection limit               | Median                               | 4.5          | 1600         | J1PW87 Method detection limit                    | Std. devn.<br>Median            | 3674<br>1700 | 2900         | J1PW86           | Detection limit or PQL Method detection limit | Std. devn.                      |         |
|          | 0.85         | J1PW88             |                                      | 12 Min.                              | 0.80         | 770          | J1PW88 TOTAL                                     |                                 | 330          | 2200<br>500  | J1PW87<br>J1PW88 | Method detection limit                        | Median                          |         |
|          | 0.80         | J1PW89             |                                      | Max.                                 | 81.7         | 1100         | J1PW89                                           | Max.                            | 13500        | 1200         | J1PW89           | TOTAL                                         | 12 Min.<br>Max.                 |         |
|          | 0.80         | J1PW90             |                                      |                                      |              | 335          | J1PW90                                           | ····                            |              | 495          | J1PW90           |                                               | iviax.                          | . 1/950 |
|          | 0.85         | J1PW91             |                                      |                                      |              | 1000         | J1PW91                                           |                                 |              | 1100         | J1PW91           |                                               |                                 |         |
| 53       | 8.1          | J1PW92             |                                      |                                      |              | 330          | J1PW92                                           |                                 | l            | 2300         | J1PW92           |                                               |                                 |         |
| 54       |              |                    | Language Heat To Maria               | No constitution of the               |              |              |                                                  |                                 | I            |              |                  |                                               |                                 |         |
| 55<br>56 |              |                    | Lognormal distribution?              | Normal distribution?                 |              |              | Lognormal distribution?                          | Normal distribution?            | - 1          |              |                  | Lognormal distribution?                       | Normal distribution?            |         |
| 57       |              |                    | r-squared is: 0.831 Recommendations: | r-squared is: 0.682                  |              |              | r-squared is: 0.967                              | r-squared is: 0.639             | 1            |              |                  | r-squared is: 0.969                           | r-squared is: 0.748             |         |
| 58       |              |                    | Reject BOTH lognormal and no         | ormal distributions                  |              |              | Recommendations:                                 |                                 | i            |              |                  | Recommendations:                              |                                 |         |
| 59       |              |                    | nojoot bo ti nognomiai and ili       | orma distributions.                  |              |              | Use lognormal distribution.                      |                                 | l            |              |                  | Use lognormal distribution.                   |                                 |         |
| 60       |              |                    | UCL (based on Z-statistic) is        | 29.0                                 |              |              | UCL (Land's method) is                           | 7899                            |              |              |                  | HOL (torollo                                  | 40440                           |         |
| 61 Q     | ualifiers    | are defined        | d on page 3.                         |                                      |              |              | OUL (Land 5 method) is                           | 7033                            |              |              |                  | UCL (Land's method) is                        | 18110                           |         |

Washington Closure Hanford

Originator N. K. Schiffern

Project 100-D Field Remediation

Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations

07/01/13 14655 Job No.

Calc. No. 0100D-CA-V0508 Checked J. D. Skoglie

07/01/13 Date 19 of 24

| DATA                | ID                      |                               | UCL Calculation           |       | DATA       | ID               |                                 | and 100-D-83:1 Waste Sites Sta |            | DATA       | ID               | Bervilium 95%                                    | UCL Calculation      | _  |
|---------------------|-------------------------|-------------------------------|---------------------------|-------|------------|------------------|---------------------------------|--------------------------------|------------|------------|------------------|--------------------------------------------------|----------------------|----|
| 2.4                 | J1R645/J1F              |                               |                           |       | 48.1       | J1R645/J1        |                                 |                                |            | 0.21       | J1R645/J1R       | •                                                | outonanori           |    |
| 2.5                 | J1R641                  |                               |                           |       | 52.0       | J1R641           |                                 |                                |            | 0.23       | J1R641           | 000                                              |                      |    |
| 2.7                 | J1R642                  | Number of samples             | Uncensored values         |       | 63.0       | J1R642           | Number of samples               | Uncensored values              |            | 0.23       | J1R642           | Number of samples                                | Uncensored values    |    |
| 2.4                 | J1R643                  | Uncensored                    |                           | 2.3   | 53.0       | J1R643           | Uncensored                      | -                              | 54.0       | 0.24       | J1R643           | Uncensored                                       |                      | -  |
| 1.6                 | J1R644                  | Censored                      | Lognormal mean            | 2.3   | 43.5       | J1R644           | Censored                        | Lognormal mean                 |            | 0.16       | J1R644           | Censored                                         |                      |    |
| 2.3                 | J1R646                  | Detection limit or PQL        | Std. devn.                | 0.31  | 58.1       | J1R646           | Detection limit or PQL          | 3                              |            | 1          |                  |                                                  | Lognormal mean       |    |
| 2.0                 | J1R647                  | Method detection limit        | Median                    | 2.4   | 44.4       | J1R647           |                                 | Std. devn.                     | 6.3        | 0.22       | J1R646           | Detection limit or PQL                           | Std. devn.           |    |
| 2.2                 | J1RKM8                  | TOTAL                         | 12 Min.                   | 1.6   |            |                  | Method detection limit<br>TOTAL | Median                         |            | 0.20       | J1R647           | Method detection limit                           | Median               |    |
| 2.4                 | J1RKM9                  | IOIAL                         |                           |       | 59.6       | J1RKM8           | TOTAL                           |                                | 43.5       | 0.015      | J1RKM8           | TOTAL                                            | 12 Min.              |    |
| 2.7                 | J1RKM6                  |                               | Max.                      | 2.7   | 53.8       | J1RKM9           |                                 | Max.                           | 63.0       | 0.030      | J1RKM9           |                                                  | Max.                 | K. |
| 2.6                 | J1RKM7                  |                               |                           |       | 53.5       | J1RKM6           |                                 |                                |            | 0.057      | J1RKM6           |                                                  |                      |    |
| 2.2                 | J1RKM5                  |                               |                           |       | 60.2       | J1RKM7           |                                 |                                |            | 0.068      | J1RKM7           |                                                  | •                    |    |
| 2.2                 | 3 I HVIVIS              |                               |                           |       | 58.7       | J1RKM5           |                                 |                                |            | 0.016      | J1RKM5           |                                                  |                      |    |
|                     |                         | Omnavaal aliateibutaanO       | Alama al aliatrila di a G |       |            |                  |                                 |                                |            |            | _                |                                                  |                      |    |
|                     |                         | Lognormal distribution?       | Normal distribution?      |       | •          |                  | Lognormal distribution?         | Normal distribution?           |            |            |                  | ognormal distribution?                           | Normal distribution? |    |
|                     |                         | r-squared is: 0.861           | r-squared is: 0.912       |       |            |                  | r-squared is: 0.940             | r-squared is: 0.954            |            |            |                  | squared is: 0.820                                | r-squared is: 0.849  |    |
|                     |                         | Recommendations:              |                           |       |            |                  | Recommendations:                |                                |            |            |                  | Recommendations:                                 |                      |    |
|                     |                         | Use normal distribution.      |                           |       |            |                  | Use lognormal distribution.     |                                |            |            | F                | Reject BOTH lognormal and no                     | ormal distributions. |    |
|                     | 1                       | UCL (based on t-statistic) is | 2.5                       |       |            |                  | LICL (Land's mothod) is         | F7 6                           |            | İ          | i                | ICI (based on 7 statistic) !-                    | 0.49                 |    |
| DATA                | ID                      |                               | 6 UCL Calculation         |       | DATA       | ID               | UCL (Land's method) is          | 57.6 WCL Calculation           |            | DATA       | iD .             | JCL (based on Z-statistic) is                    | 0.18                 |    |
| .045                | J1R645/J1F              |                               |                           |       | 5.9        | J1R645/J1F       |                                 | /e GOL CalculatiOII            |            | 7.4        | טו<br>J1R645/J1R |                                                  | CL Calculation       |    |
| 0.070               | J1R641                  |                               |                           |       | 7.9        | J1R641           |                                 |                                |            | 7.7        | J1R641           | 000                                              |                      |    |
| 0.074               | J1R642                  | Number of samples             | Uncensored values         |       | 7.8        | J1R642           | Number of samples               | Uncensored values              |            | 7.4        | J1R642           | Number of samples                                | Uncensored values    |    |
| 0.042               | J1R643                  | Uncensored                    |                           | 0.095 | 7.8        | J1R643           | Uncensored                      |                                | 7.3        | 7.7        | J1R643           | Uncensored                                       |                      |    |
| 0.044               | J1R644                  | Censored                      | Lognormal mean            | 0.097 | 4.6        | J1R644           | Censored                        | Lognormal mean                 | 7.3<br>7.3 | 7.7<br>7.9 | J1R644           | Censored                                         |                      |    |
| 0.067               | J1R646                  | Detection limit or PQL        | Std. devn.                | 0.050 | 6.9        | J1R646           | Detection limit or PQL          | Std. devn.                     | 7.3<br>1.2 | 7.9<br>7.4 | J1R644<br>J1R646 | Detection limit or PQL                           | Lognormal mean       |    |
| 0.049               | J1R647                  | Method detection limit        | Median                    | 0.030 | 6.5        | J1R647           | Method detection limit          | Sta. devn.<br>Median           | 1.2<br>7.8 |            |                  |                                                  | Std. devn.           |    |
| 0.15                | J1RKM8                  | TOTAL                         | 12 Min.                   | 0.072 | 7.8        | J1RKM8           | TOTAL                           |                                | 7.8<br>4.6 | 7.7        | J1R647<br>J1RKM8 | Method detection limit                           | Median               |    |
| 0.16                | J1RKM9                  | TOTAL                         | Max.                      | 0.042 | 7.8<br>7.4 | J1RKM9           | TOTAL                           | ı∠ mın.<br>Max.                | 4.6<br>9.4 | 7.3        |                  | TOTAL                                            | 12 Min.              |    |
| 0.14                | J1RKM6                  |                               | ividX.                    | 0.10  | 7.4        | J1RKM6           |                                 | мах.                           | 9.4        | 7.5        | J1RKM9           |                                                  | Max.                 | .• |
| 0.15                | J1RKM7                  |                               |                           |       | 9.4        | J1RKM6<br>J1RKM7 |                                 |                                |            | 7.6        | J1RKM6           |                                                  |                      |    |
| 0.15                | J1RKM5                  |                               |                           |       | 9.4<br>7.8 | J1RKM/<br>J1RKM5 |                                 |                                |            | 6.4        | J1RKM7           |                                                  |                      |    |
| J. 10               | 3 17 11 (1910)          |                               |                           |       | 7.0        | CIVIVID          |                                 |                                |            | 7.2        | J1RKM5           |                                                  |                      |    |
|                     | !                       | Lognormal distribution?       | Normal distribution?      | 1     |            |                  | Lognormal distribution?         | Normal distribution?           |            | ]          |                  | ognormal distribution?                           | Normal distribution? |    |
|                     |                         | r-squared is: 0.860           | r-squared is: 0.828       | :     |            |                  | r-squared is: 0.826             | r-squared is: 0.871            |            |            |                  | ognormal distribution?                           | r-squared is: 0.808  |    |
|                     |                         | Recommendations:              |                           |       |            |                  | Recommendations:                | 1 oquared 13. 0.0/1            |            |            |                  | lecommendations:                                 | Paqualeu is. 0.000   |    |
|                     |                         | Reject BOTH lognormal and no  | ormal distributions.      |       |            |                  | Reject BOTH lognormal and no    | ormal distributions            |            |            |                  | lecommendations:<br>leject BOTH lognormal and no | ormal distributions  |    |
|                     |                         |                               |                           | 1     |            |                  | , a a a girorina, and the       |                                |            | •          | Г                | iojosi bo i i iognomiai and ni                   | and distributions.   |    |
|                     |                         | JCL (based on Z-statistic) is | 0.12                      |       |            |                  | UCL (based on Z-statistic) is   | 7.9                            |            |            |                  | CL (based on Z-statistic) is                     | 7.6                  |    |
| <b>DATA</b><br>14.3 | <b>ID</b><br>J1R645/J1F |                               | UCL Calculation           |       | DATA       | ID<br>H Deac(H)  |                                 | um 95% UCL Calculation         |            | DATA       | ID               |                                                  | CL Calculation       |    |
| 16.0                | J1R645/J1F              | 1000                          |                           |       | 0.216      | J1R645/J1F       | 1003                            |                                |            | 4.5        | J1R645/J1R       | 553                                              |                      |    |
| 16.4                | J1R642                  | Number of complex             | Uncensored values         |       | 0.283      | J1R641           | Nicombo                         |                                |            | 3.6        | J1R641           |                                                  |                      |    |
| 16.2                |                         | Number of samples             |                           | .,, 1 | 0.303      | J1R642           | Number of samples               | Uncensored values              |            | 5.6        | J1R642           | Number of samples                                | Uncensored values    |    |
|                     | J1R643                  |                               | 12 Mean                   | 14.6  | 0.522      | J1R643           | Uncensored                      |                                | 0.225      | 4.4        | J1R643           | Uncensored                                       | 2 Mean               | a  |
| 13.6                | J1R644                  | Censored                      | Lognormal mean            | 14.6  | 0.165      | J1R644           | Censored                        | Lognormal mean                 | 0.229      | 2.0        | J1R644           | Censored                                         | Lognormal mean       |    |
| 15.5                | J1R646                  | Detection limit or PQL        | Std. devn.                | 1.1   | 0.633      | J1R646           | Detection limit or PQL          | Std. devn.                     | 0.185      | 7.1        | J1R646           | Detection limit or PQL                           | Std. devn.           |    |
| 13.5                | J1R647                  | Method detection limit        | Median                    | 14.3  | 0.185      | J1R647           | Method detection limit          | Median                         | 0.175      | 2.6        | J1R647           | Method detection limit                           | Median               |    |
| 13.1                | J1RKM8                  | TOTAL                         |                           | 13.1  | 0.0775     | J1RKM8           | TOTAL                           |                                | 0.0775     | 4.0        | J1RKM8           | TOTAL *                                          | 2 Min.               | i. |
| 14.6                | J1RKM9                  |                               | Max.                      | 16.4  | 0.0775     | J1RKM9           |                                 | Max.                           | 0.633      | 4.3        | J1RKM9           |                                                  | Max.                 |    |
| 14.3                | J1RKM6                  |                               |                           | I     | 0.0775     | J1RKM6           |                                 |                                |            | 3.9        | J1RKM6           |                                                  |                      |    |
| 14.2                | J1RKM7                  |                               |                           | ļ     | 0.0775     | J1RKM7           |                                 |                                |            | 3.5        | J1RKM7           |                                                  |                      |    |
| 13.8                | J1RKM5                  |                               |                           | İ     | 0.0775     | J1RKM5           |                                 |                                |            | 3.4        | J1RKM5           |                                                  |                      |    |
|                     |                         | agnormal distributions        | Normal distribution       | İ     |            |                  | 1                               |                                |            |            |                  |                                                  |                      |    |
|                     |                         | _ognormal distribution?       | Normal distribution?      |       |            |                  | Lognormal distribution?         | Normal distribution?           |            | l          |                  | ognormal distribution?                           | Normal distribution? |    |
|                     |                         | -squared is: 0.938            | r-squared is: 0.930       |       |            |                  | r-squared is: 0.884             | r-squared is: 0.808            |            | l          |                  | squared is: 0.947                                | r-squared is: 0.918  |    |
|                     |                         | Recommendations:              |                           |       |            |                  | Recommendations:                |                                |            | l          |                  | ecommendations:                                  |                      |    |
|                     | ŧ                       | Jse lognormal distribution.   |                           | ļ     |            |                  | Reject BOTH lognormal and no    | ormal distributions.           |            | Ī          | U                | se lognormal distribution.                       |                      |    |
|                     |                         |                               |                           | j     |            |                  |                                 |                                |            |            |                  |                                                  |                      |    |
|                     | 1                       | JCL (Land's method) is        | 15.2                      | 1     |            | 1                | UCL (based on Z-statistic) is   | 0.313                          |            |            |                  | CL (Land's method) is                            | 5.0                  |    |

|                                                                                                  | CALCULATION SHEET    |                            |           |          |   |
|--------------------------------------------------------------------------------------------------|----------------------|----------------------------|-----------|----------|---|
| Washington Closure Hanford                                                                       |                      |                            |           |          |   |
| Originator N. K. Schiffern                                                                       | Date 07/01/13        | Calc. No. 0100D-CA-V0508 a | Rev. No.  | 0        |   |
| Project 100-D Field Remediation                                                                  |                      |                            |           | 0        | _ |
|                                                                                                  | Job No. <u>14655</u> | Checked J. D. Skoglie      | Date      | 07/01/13 | _ |
| Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations |                      | _1g                        | Sheet No. | 20 of 24 |   |
|                                                                                                  |                      | •                          |           |          |   |

|                                                                |                                                                      |                                                                                                  |                                                                                           | Ste Sites Oreariap Verification 00/0 C                         | _                                       |                                                                          | _                                                                                                                                                               |                                                                |                                           |                                                                         | 10                                                                                           | Sheet No. 20 of                                                                     |                             |
|----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|
|                                                                | DATA                                                                 | iD                                                                                               | - Manuanasa Of                                                                            | CV 1101 Colombian                                              | Ecology                                 |                                                                          | MTCAStat) Results, 100-D-77, 100-D-62                                                                                                                           |                                                                | Pile Ar                                   |                                                                         |                                                                                              |                                                                                     |                             |
| 2                                                              | 257                                                                  | J1R645/J1R653                                                                                    |                                                                                           | 5% UCL Calculation                                             |                                         | 0.0092                                                                   | J1R645/J1R653                                                                                                                                                   | 6 UCL Calculation                                              | l                                         | DATA ID<br>0.12 J1R645/J1R653                                           | Molybdenum 95%                                                                               | UCL Calculation                                                                     |                             |
| 3<br>4<br>5                                                    | 295<br>280<br>284                                                    | J1R641<br>J1R642<br>J1R643                                                                       | Number of samples<br>Uncensored                                                           | Uncensored values 12 Mean                                      | 278                                     | 0.011<br>0.043<br>0.036                                                  | J1R641 J1R642 Number of samples J1R643 Uncensored                                                                                                               |                                                                | 0.013                                     | 0.24 J1R641<br>0.35 J1R642<br>0.46 J1R643                               | Number of samples Uncensored 12                                                              | Uncensored values<br>Mean                                                           | 0.23                        |
| 6<br>7                                                         | 264<br>273                                                           | J1R644<br>J1R646                                                                                 | Censored Detection limit or PQL                                                           | Lognormal mean<br>Std. devn.                                   | 278<br>17.3                             | 0.0028                                                                   | J1R644 Censored                                                                                                                                                 | Lognormal mean 0                                               | .014                                      | 0.14 J1R644                                                             | Censored                                                                                     | Lognormal mean                                                                      | 0.23                        |
| 8                                                              | 249<br>308                                                           | J1R647<br>J1RKM8                                                                                 | Method detection limit                                                                    | Median                                                         | 277                                     | 0.0028                                                                   | J1R647 Method detection limit                                                                                                                                   | Median 0.                                                      | 0.014<br>0.0089                           | 0.32 J1R646<br>0.13 J1R647                                              | Detection limit or PQL<br>Method detection limit                                             | Std. devn.<br>Median                                                                | 0.12<br>0.19                |
| 10<br>11<br>12<br>13                                           | 291<br>292<br>265<br>273                                             | J1RKM9<br>J1RKM6<br>J1RKM7<br>J1RKM5                                                             | TOTAL                                                                                     | 12 Min.<br>Max.                                                | 249<br>308                              | 0.0027<br>0.011<br>0.0085<br>0.0070<br>0.0024                            | J1RKM8 TOTAL<br>J1RKM9<br>J1RKM6<br>J1RKM7<br>J1RKM5                                                                                                            |                                                                | .0024<br>).043                            | 0.12 J1RKM8<br>0.12 J1RKM9<br>0.33 J1RKM6<br>0.13 J1RKM7<br>0.33 J1RKM5 | TOTAL 12                                                                                     | Min.<br>Max.                                                                        | 0.12<br>0.46                |
| 14<br>15<br>16<br>17<br>18                                     |                                                                      | r-squ<br>Reco                                                                                    | ormal distribution?<br>lared is: 0.987<br>mmendations:<br>lognormal distribution.         | Normal distribution?<br>r-squared is: 0.987                    |                                         |                                                                          | Lognormal distribution? r-squared is: 0.928 Recommendations: Use lognormal distribution.                                                                        | Normal distribution?<br>r-squared is: 0.778                    |                                           | r-squ<br>Reco                                                           | normal distribution?<br>uared is: 0.827<br>ommendations:<br>ct BOTH lognormal and norr       | Normal distribution?<br>r-squared is: 0.837<br>nal distributions.                   |                             |
| 20                                                             |                                                                      |                                                                                                  | (Land's method) is                                                                        | 287                                                            |                                         |                                                                          | UCL (Land's method) is                                                                                                                                          | 0.034                                                          |                                           | UCL                                                                     | (based on Z-statistic) is                                                                    | 0.29                                                                                |                             |
| 21<br>22<br>23                                                 | 8.4<br>9.5                                                           | ID<br>J1R645/J1R653<br>J1R641                                                                    |                                                                                           | 95% UCL Calculation                                            | _                                       | <b>DATA</b><br>51.1<br>51.1                                              | ID Vanadiu<br>J1R645/J1R653<br>J1R641                                                                                                                           | ım 95% UCL Calculation                                         |                                           | DATA ID<br>38.2 J1R645/J1R653                                           |                                                                                              | UCL Calculation                                                                     | -                           |
| 24<br>25<br>26<br>27                                           | 8.8<br>8.2<br>7.1<br>8.2                                             | J1R642<br>J1R643<br>J1R644<br>J1R646                                                             | Number of samples<br>Uncensored<br>Censored                                               | Lognormal mean                                                 | 9.5<br>9.5                              | 53.9<br>55.2<br>58.0                                                     | J1R642 Number of samples<br>J1R643 Uncensored<br>J1R644 Censored                                                                                                |                                                                | 49.9<br>49.9                              | 44.5 J1R641<br>45.3 J1R642<br>51.3 J1R643<br>39.4 J1R644                | Number of samples<br>Uncensored 12<br>Censored                                               | Uncensored values<br>Mean<br>Lognormal mean                                         | 40.3<br>40.3                |
| 28<br>29<br>30<br>31                                           | 9.6<br>10.0<br>9.9                                                   | J1R646<br>J1R647<br>J1RKM8<br>J1RKM9<br>J1RKM6                                                   | Detection limit or PQL<br>Method detection limit<br>TOTAL                                 | Std. devn.<br>Median<br>12 Min.<br>Max.                        | 1.5<br>9.6<br>7.1<br>12.9               | 53.6<br>51.5<br>45.5<br>45.4                                             | J1R646 Detection limit or PQL J1R647 Method detection limit J1RKM8 TOTAL J1RKM9                                                                                 | Median 5<br>12 Min. 4                                          | 5.1<br>51.1<br>40.0<br>58.0               | 43.2 J1R646<br>36.9 J1R647<br>38.2 J1RKM8<br>39.6 J1RKM9                | Detection limit or PQL<br>Method detection limit<br>TOTAL 12                                 | Std. devn.<br>Median<br>Min.<br>Max.                                                | 4.9<br>38.8<br>33.5<br>51.3 |
| 32<br>33<br>34                                                 | 12.9<br>10.9                                                         | J1RKM7<br>J1RKM5                                                                                 |                                                                                           |                                                                |                                         | 46.2<br>40.0<br>46.8                                                     | J1RKM6<br>J1RKM7<br>J1RKM5                                                                                                                                      |                                                                |                                           | 36.2 J1RKM6<br>33.5 J1RKM7<br>37.3 J1RKM5                               |                                                                                              |                                                                                     |                             |
| 35<br>36<br>37<br>38<br>39                                     |                                                                      | r-squ<br>Reco                                                                                    | ormal distribution? lared is: 0.958 pmmendations: lognormal distribution.                 | Normal distribution?<br>r-squared is: 0.932                    |                                         |                                                                          | Lognormal distribution? r-squared is: 0.949 Recommendations: Use lognormal distribution.                                                                        | Normal distribution?<br>r-squared is: 0.962                    |                                           | r-squ<br>Reco                                                           | normal distribution?<br>Juared is: 0.940<br>Commendations:<br>Lognormal distribution.        | Normal distribution?<br>r-squared is: 0.914                                         |                             |
| 40                                                             |                                                                      |                                                                                                  | (Land's method) is                                                                        | 10.3                                                           |                                         |                                                                          | UCL (Land's method) is                                                                                                                                          | 52.8                                                           |                                           | UCL                                                                     | (Land's method) is                                                                           | 43.0                                                                                |                             |
| 41<br>42<br>43                                                 | 6.2<br>3.1                                                           | ID<br>J1R645/J1R653<br>J1R641                                                                    |                                                                                           | le 95% UCL Calculation                                         |                                         | 1.3<br>0.99                                                              | ID Nitrogen in I<br>J1R645/J1R653<br>J1R641                                                                                                                     | Nitrate 95% UCL Calculation                                    |                                           | DATA ID<br>0.98 J1R645/J1R653<br>0.52 J1R641                            |                                                                                              | 1 Nitrate 95% UCL Calculation                                                       | 1                           |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54 | 3.9<br>7.3<br>2.9<br>19.1<br>9.2<br>4.2<br>4.1<br>14.1<br>4.3<br>4.2 | J1R642<br>J1R643<br>J1R644<br>J1R646<br>J1R647<br>J1RKM8<br>J1RKM9<br>J1RKM6<br>J1RKM7<br>J1RKM7 | Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL | Lognormal mean<br>Std. devn.<br>Median<br>12 Min.<br>Max.      | 6.9<br>6.8<br>5.0<br>4.3<br>2.9<br>19.1 | 1.7<br>3.2<br>0.90<br>1.9<br>0.94<br>0.96<br>0.80<br>1.5<br>0.82<br>0.99 | J1R642 Number of samples J1R643 Uncensored J1R644 Censored J1R646 Detection limit or PQL J1R647 Method detection limit J1RKM8 TOTAL J1RKM9 J1RKM6 J1RKM7 J1RKM5 | Lognormal mean Std. devn. 0 Median 0 12 Min. 0                 | 1.3<br>1.3<br>0.69<br>0.99<br>0.80<br>3.2 | 1.4 J1R642<br>3.1 J1R643<br>0.48 J1R644                                 | Number of samples Uncensored Censored Detection limit or PQL Method detection limit TOTAL 12 | Uncensored values<br>Mean<br>Lognormal mean<br>Std. devn.<br>Median<br>Min.<br>Max. | 0.55<br>0.30                |
| 55<br>56<br>57<br>58<br>59                                     |                                                                      | r-squ<br>Reco                                                                                    | ormal distribution?<br>lared is: 0.893<br>ommendations:<br>ct BOTH lognormal and n        | Normal distribution? r-squared is: 0.755 normal distributions. |                                         |                                                                          | Lognormal distribution?<br>r-squared is: 0.861<br>Recommendations:<br>Reject BOTH lognormal and                                                                 | Normal distribution? r-squared is: 0.731 normal distributions. |                                           | r-squ<br>Reco                                                           | ormal distribution?<br>lared is: 0.907<br>ommendations:<br>lognormal distribution.           | Normal distribution?<br>r-squared is: 0.721                                         |                             |
| 60                                                             |                                                                      |                                                                                                  | (based on Z-statistic) is                                                                 | 9.3                                                            |                                         |                                                                          | UCL (based on Z-statistic) is                                                                                                                                   | 1.7                                                            |                                           | UCL                                                                     | (Land's method) is                                                                           | 1.5                                                                                 |                             |
| 61                                                             | Qualifier                                                            | rs are defined on p                                                                              | age 3.                                                                                    |                                                                |                                         |                                                                          |                                                                                                                                                                 |                                                                |                                           |                                                                         |                                                                                              |                                                                                     |                             |

<u>Washington Closure Hanford</u>
Originator N. K. Schiffern

Project 100-D Field Remediation Subject 100-D-77 100-D-55 Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations

Date 07/01/13 Job No. 14655

Calc. No. 0100D-CA-V0508 Checked J. D. Skoglie

Rev. No. Date 07/01/13 21 of 24

Uncensored values

Lognormal mean

Mean

Std. devn.

Median

Min.

9305

4642

8150

2700 Max. 17000

| •          |                  | <u> </u>                       |       |                      |         |               |            |                                                |       |                             |             |           |                         | <b>/</b> ·                  |        |                       |
|------------|------------------|--------------------------------|-------|----------------------|---------|---------------|------------|------------------------------------------------|-------|-----------------------------|-------------|-----------|-------------------------|-----------------------------|--------|-----------------------|
| DATA       | ID               | Sulfate 95%                    | uci ( | Calculation          | Ecology | Software DATA | (MTCAStat) | Results, 100-D-77, 100-D-62,                   |       | 100-D-83:1 Waste Sites Stag | ging Pile A | rea (SPA) | ID.                     | TOU Dies                    |        | T 95% UCL Calculation |
| 11.7       | J1R645/J         |                                | OCL ( | Jaculation           |         | 4200          | J1R645/J   |                                                | sei 9 | 5% OCL Calculation          |             | 6250      | I <b>D</b><br>J1R645/J1 |                             | iei ex | 1 95% UCL Calculation |
| 6.6        | J1R641           |                                |       |                      |         | 4500          | J1R641     | 11.000                                         |       |                             |             | 7000      | J1R641                  | 111055                      |        |                       |
| 9.9        | J1R642           | Number of samples              |       | Uncensored values    |         | 6800          | J1R642     | Number of samples                              |       | Uncensored values           |             | 16000     | J1R642                  | Number of samples           |        | Uncensored va         |
| 36.0       | J1R643           | Uncensored                     | 12    | Mean                 | 8.7     | 7400          | J1R643     | Uncensored                                     | 12    | Mean                        | 4700        | 17000     | J1R643                  | Uncensored                  |        |                       |
| 5.3        | J1R644           | Censored                       |       | Lognormal mean       | 8.4     | 2200          | J1R644     | Censored                                       |       | Lognormai mean              | 4741        | 2700      | J1R644                  | Censored                    |        | Lognormal m           |
| 10.6       | J1R646           | Detection limit or PQL         |       | Std. devn.           | 9.1     | 6100          | J1R646     | Detection limit or PQL                         |       | Std. devn.                  | 1650        | 11000     | J1R646                  | Detection limit or PQL      |        | Std. d                |
| 4.5        | J1R647           | Method detection limit         |       | Median               | 5.3     | 3200          | J1R647     | Method detection limit                         |       | Median                      | 4350        | 4900      | J1R647                  | Method detection limit      |        | Me                    |
| 4.2        | J1RKM8           |                                | 12    | Min.                 | 3.2     | 5400          | J1RKM8     |                                                | 12    | Min.                        | 2200        | 11000     | J1RKM8                  |                             | 12     |                       |
| 3.3        | J1RKM9           |                                |       | Max.                 | 36.0    | 4200          | J1RKM9     |                                                |       | Max.                        | 7400        | 9300      | J1RKM9                  |                             |        | N                     |
| 5.2        | J1RKM6           |                                |       |                      |         | 6100          | J1RKM6     | ,                                              |       |                             |             | 13000     | J1RKM6                  |                             |        |                       |
| 4.3        | J1RKM7           |                                |       |                      |         | 3100          | J1RKM7     |                                                |       |                             |             | 6800      | J1RKM7                  |                             |        |                       |
| 3.2        | J1RKM5           |                                |       |                      |         | 3200          | J1RKM5     |                                                |       |                             |             | 3800      | J1RKM5                  |                             |        |                       |
|            |                  | Lognormal distribution?        |       | Normal distribution? |         | 1             |            | Language at altertaile at a co                 |       | M. Lesser e. O              |             |           |                         |                             |        |                       |
|            |                  | r-squared is: 0.859            |       | r-squared is: 0.576  |         | 1             |            | Lognormal distribution?<br>r-squared is: 0.959 |       | Normal distribution?        |             |           |                         | Lognormal distribution?     |        | Normal distribution?  |
|            |                  | Recommendations:               |       | r-squared is. 0.576  |         |               |            | Recommendations:                               |       | r-squared is: 0.963         |             |           |                         | r-squared is: 0.971         |        | r-squared is: 0.963   |
|            |                  | Reject BOTH lognormal and n    | ormal | distributions        |         |               |            | Use lognormal distribution.                    |       |                             |             | ]         |                         | Recommendations:            |        |                       |
|            |                  | rioject Be i'r rognormar and r | Oma   | distributions.       |         |               |            | Ose lognormal distribution.                    |       |                             |             |           |                         | Use lognormal distribution. |        |                       |
|            |                  | UCL (based on Z-statistic) is  |       | 13.0                 |         |               |            | UCL (Land's method) is                         |       | 5933                        |             |           |                         | UCL (Land's method) is      |        | 13669                 |
| DATA       | ID               | Aroclor-1                      | 260 9 | 5% UCL Calculation   |         |               |            | <u>.</u>                                       |       |                             |             |           |                         |                             |        |                       |
| 1.3        | J1R645/J         | 1R653                          |       |                      |         |               |            |                                                |       |                             |             |           |                         |                             |        |                       |
| 2.6        | J1R641           |                                |       |                      |         |               |            |                                                |       |                             |             |           |                         |                             |        |                       |
| 20         | J1R642           | Number of samples              |       | Uncensored values    |         |               |            |                                                |       |                             |             |           |                         |                             |        |                       |
| 14         | J1R643           | Uncensored                     | 12    | Mean                 | 5.4     |               |            |                                                |       |                             |             |           |                         |                             |        |                       |
| 1.3        | J1R644           | Censored                       |       | Lognormal mean       | 5.4     | 1             |            |                                                |       |                             |             |           |                         |                             |        |                       |
| 3.9        | J1R646           | Detection limit or PQL         |       | Std. devn.           | 6.6     |               |            |                                                |       |                             |             |           |                         |                             |        |                       |
| 1.3        | J1R647           | Method detection limit         |       | Median               | 2.0     |               |            |                                                |       |                             |             |           |                         |                             |        |                       |
| 1.3        | J1RKM8           |                                | 12    | Min.                 | 1.2     | I             |            |                                                |       |                             |             |           |                         |                             |        |                       |
| 3.1<br>1.2 | J1RKM9<br>J1RKM6 |                                |       | Max.                 | 20      |               |            |                                                |       |                             |             |           |                         |                             |        |                       |
| 1.2        | JIRKM6           |                                |       |                      |         |               |            |                                                |       |                             |             |           |                         |                             |        |                       |
| 1.3        | J1RKM5           |                                |       |                      |         | 1             |            | •                                              |       |                             |             |           |                         |                             |        |                       |
| 7.5        | CIVITIES         |                                |       |                      |         |               |            |                                                |       |                             |             |           |                         |                             |        |                       |
|            |                  |                                |       |                      |         | 1             |            |                                                |       |                             |             |           |                         |                             |        |                       |

Lognormal distribution?

UCL (based on Z-statistic) is

Reject BOTH lognormal and normal distributions.

r-squared is: 0.805

Recommendations:

Normal distribution?

r-squared is: 0.690

Rev. No. 0100D-CA-V0508A Calc. No. 07/01/13 Date 07/01/13 Date J. D. Skoglie Washington Closure Hanford Checked 22 of 24 Originator N. K. Schiffern Sheet No. 14655 Job No. Subject 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculations mg/kg Q PQL Copper Cobalt mg/kg Q PQL Chromium mg/kg Q PQL 0.26 Calcium Duplicate/Split Analysis - 100-D-77, 100-D-62, 100-D-83:1 Excavation (EXC) mg/kg Q PQL mg/kg Q PQL Beryllium 3.7 3.9 X Barium mg/kg Q PQL 17600 X 0.25 Arsenic 0.21 mg/kg Q PQL 14.1 0.098 4.0 Q PQL X 0.057 6.1 X 17700 X 3.5 Aluminum Sample Sample mg/kg Q PQL mg/kg Q PQL mg/kg 13.8 13.0 0.20 0.441 Sampling 9060 X 14.0 X 0.093 3.31 0.032 6.1 17.6 0.27 13.4 X 0.054 0.074 Date 0.882 | 14500 Number 0.64 61.3 8710 X 13.1 Area 11.9 3.6 0.031 1.76 1.5 4.91 7070 X 0.26 0.176 9/18/2012 0.071 J1PW83 63.3 88.2 10.8 0.61 EXC-3 7790 3.5 0.176 7140 X 1.4 0.215 0.441 J1PW93 9/18/2012 54.0 Duplicate of J1PW83 0.882 Yes (continue) J1PWF8 9/18/2012 6010 4.41 3.03 Yes (continue) Split of J1PW83 100 Yes (continue) No-Stop (acceptable) Yes (continue) 0.2 Yes (calc RPD) Yes (continue) Yes (calc RPD) Yes (continue) Analysis: 10 Yes (continue) No-Stop (acceptable) Yes (calc RPD) 0.6% Yes (continue) TDL Yes (calc RPD) Yes (continue) 0.7% No - acceptable Yes (continue) No-Stop (acceptable) Not applicable Yes (calc RPD) 3.0% Both > PQL? Not applicable 3.9% Yes (continue) No-Stop (acceptable) Yes (caic RPD) No - acceptable Yes (continue) Both >5xTDL? 3.2% Not applicable Yes (continue) No-Stop (acceptable) Not applicable Yes (continue) No - acceptable 1.0% Yes (continue) Yes (calc RPD) **Duplicate Analysis** Yes (calc RPD) RPD Not applicable Yes (continue) No - acceptable Yes (continue) No-Stop (acceptable) Not applicable 19.3% Difference > 2 TDL? Yes (continue) Yes (calc RPD) Yes (calc RPD) 16.9% No - acceptable Yes (continue) No-Stop (acceptable) Yes (continue) Both > PQL? Yes (calc RPD) 18.5% Not applicable Not applicable 15.1% No-Stop (acceptable) 13 Yes (calc RPD) No - acceptable Both >5xTDL? 12.7% Not applicable Not applicable 14 16.2% No - acceptable Split Analysis Not applicable RPD No - acceptable Zinc 15 Not applicable Vanadium Difference > 2 TDL? Sodium mg/kg Q PQL Silicon mg/kg Q PQL Potassium mg/kg Q PQL 35.0 X 0.39 18 Duplicate/Split Analysis - 100-D-77, 100-D-62, 100-D-83:1 Excavation (EXC) Nickel mg/kg Q PQL Molybdenum mg/kg Q PQL 0.092 mg/kg Q PQL Mercury 57.6 40.4 34.8 X 30.8 0.37 Manganese 280 mg/kg Q PQL 5.5 376 XJ 0.088 mg/kg Q PQL 40.0 41.6 Sample mg/kg Q PQL 12.5 X 0.12 HEIS 1050 55.0 269 8.82 Sampling mg/kg Q PQL 0.25 B 0.25 5.3 19 424 XJ 0.0074 B 0.0051 2.21 38.2 36.7 Date X 0.098 1090 44.1 Number 12.7 X 0.11 232 Area 1.76 20 289 3.6 0.24 U 0.24 256 J1PW83 9/18/2012 4920 353 0.0068 B 0.0052 286 X 0.093 944 3.53 EXC-3 9.49 0.357 B 1.76 3.4 X J1PW93 9/18/2012 4860 0.0266 U 0.0266 2.5 Duplicate of J1PW83 4.41 50 Yes (continue) 242 22 66.2 4000 Yes (continue) Split of J1PW83 J1PWF8 9/18/2012 400 Yes (continue) Yes (calc RPD) 23 0.2 Yes (continue) Yes (calc RPD) Yes (continue) 0.2 Yes (calc RPD) Yes (continue) 24 Analysis: No-Stop (acceptable) Yes (calc RPD) 0.6% 75 2.9% No-Stop (acceptable) Yes (continue) Yes (continue) No-Stop (acceptable) 4.0% Not applicable Yes (continue) 12.0% No-Stop (acceptable) Both > PQL? Not applicable Yes (calc RPD) Not applicable Yes (continue) Yes (calc RPD) Not applicable Both >5xTDL? No - acceptable Yes (continue) Yes (continue) 1.0% No - acceptable Yes (calc RPD) Yes (continue) Not applicable 27 **Duplicate Analysis** 1.2% Yes (calc RPD) No - acceptable Yes (continue) RPD Yes (continue) No-Stop (acceptable) Not applicable 12.8% Not applicable No-Stop (acceptable) Yes (calc RPD) No-Stop (acceptable) Difference > 2 TDL? No-Stop (acceptable) 9.6% No-Stop (acceptable) Yes (continue) Not applicable 29 Yes (continue) 38.0% Not applicable Both > PQL? Yes (calc RPD) No - acceptable Not applicable Yes (calc RPD) Both >5xTDL? No - acceptable No - acceptable 17.7% No - acceptable 31 20.6% Split Analysis Benzo(a)pyrene (Method | Benzo(b)fluoranthene RPD Not applicable Not applicable 32 Not applicable Difference > 2 TDL? Benzo(a)anthracene (Method 8310) Anthracene (Method 33 Acenaphthylene 8310) Acenaphthene (Method (Method 8310) ug/kg Q PQL 35 Duplicate/Split Analysis - 100-D-77, 100-D-62, 100-D-83:1 Excavation (EXC) 8310) ug/kg Q PQL **TPH - Diesel EXT** (Method 8310) ug/kg Q PQL Nitrogen in Nitrite and ug/kg Q PQL 500 N 4.2 TPH - Diesel 8310) ug/kg Q PQL 440 N 6.4 80 5.9 6.4 Nitrogen in Nitrate ug/kg Q PQL 660 N 3.2 ug/kg Q PQL 3.9 Sample Nitrate 390 N 3.0 120 HEIS ug/kg Q PQL JX 9.0 80 mg/kg Q PQL 13 2.9 10 257 D 13 190 NX 160 Sampling mg/kg Q PQL 920 U 2.8 32000 2.8 493 D 13 U 8.3 630 Number N 0.30 24000 9.2 8.3 503 D 13 348 D 13 100 Area 0.67 BJ 0.31 1.2 960 3900 J1PW83 9/18/2012 660 13 D 13 3000 J 257 D FXC-3 1.3 0.30 1530 0.57 BJ 0.29 Duplicate of J1PW83 J1PW93 9/18/2012 9800 3310 B 0.10 Yes (continue) 15 J1PWF8 9/18/2012 Yes (continue) 15 Split of J1PW83 Yes (continue) 5000 No-Stop (acceptable) Yes (calc RPD) 40 Yes (calc RPD) 5000 No-Stop (acceptable) Yes (calc RPD) Yes (continue) 0.75 41 Analysis: Yes (continue) 122.6% 0.75 Yes (continue) 138.5% TDL Yes (calc RPD) Yes (continue) 122.0% Not applicable 42 No-Stop (acceptable) Yes (continue) Not applicable Both > PQL? No-Stop (acceptable) No-Stop (acceptable) 62.1% Not applicable Yes (continue) 43 No-Stop (acceptable) Not applicable Both >5xTDL? Not applicable Yes (continue) Not applicable Yes (continue) Yes - assess further Yes (continue) Yes (calc RPD) **Duplicate Analysis** Yes (calc RPD) RPD Yes - assess further Yes (continue) Yes (calc RPD) Yes (continue) No - acceptable 64.2% 45 Yes (calc RPD) No - acceptable Difference > 2 TDL? 11.4% Yes (continue) No-Stop (acceptable) Yes (continue) Yes (calc RPD) 27.0% Not applicable 46 11.4% Not applicable Both > PQL? No-Stop (acceptable) Not applicable No-Stop (acceptable) 155.8% 47 Not applicable Both >5xTDL? Yes - assess further Not applicable Split Analysis Yes - assess further RPD No - acceptable 49 Difference > 2 TDL? 51 Qualifiers are defined on page 3.

| Washington Closure H.                                                                         |                                                                                                                                                                   |                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      | 5 · · · N-             | •                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|------------------------|----------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                               | •                                                                                                                                                                 |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         | 3                                                             | Calc. No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                      |                        |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             | Job No.                                                    |                                                         |                                                               | Checked_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | J. D                                        | 0. Skoglie 'V\       |                        |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               | Subject                                                                                                                                                           | 100-D-77, 10                                                                                                            | 00-D-62, and 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-D-83:1                                                                   | Waste Sites (                                                                          | leanup Verific                                                                                             | cation 95% UC                                               | _ Calculation                                              | ş                                                       |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 10                   | Sheet No.              | 23 01 24             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dunlingto/Calit Apolysi                                                                       | o - 100-D-77                                                                                                                                                      | IOO-D-62 10                                                                                                             | 10-D-92-1 Even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otion (E)                                                                  | (C)                                                                                    |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                        |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate/Split Analysi                                                                       |                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        | oranthene                                                                                                  |                                                             | <del></del> _                                              | Dibenz(a.h                                              | )anthracer                                                    | e Fluoranthene (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method                                      | Fluorene (Method     | Indeno(1,2,3-cd)pyrene | Phenanthrene (Method | Pyrene (Method 8310)    | Acenaphthene (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampling                                                                                      | HEIS                                                                                                                                                              | Sample                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                          |                                                                                        |                                                                                                            | Chrysene (M                                                 | etnod 8310)                                                | 1 '''                                                   | •                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | 8310)                | (Method 8310)          | 8310)                | r yrene (method corto)  | 8270)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Area                                                                                          | Number                                                                                                                                                            | Date                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | <del></del>                                                                            |                                                                                                            | ua/ka C                                                     | PQL                                                        |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PQL                                         | ug/kg Q PQL          | ug/kg Q PQL            | ug/kg Q PQL          | ug/kg Q PQL             | ug/kg Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EXC-3                                                                                         |                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               | _+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             | 250 5.3              | 300 N 12               | 1200 N 12            | 1300 N 12               | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Duplicate of J1PW83                                                                           |                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                          | 71 4.8               | 43 X 11                | 260 11               | 210 11                  | 35 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Split of J1PW83                                                                               |                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                          | 201 D 13             | 199 D 13               | 1200 D 13            | 909 D 13                | 648 UD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analysis:                                                                                     |                                                                                                                                                                   | •                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | ·                                                                                      |                                                                                                            |                                                             |                                                            | •                                                       |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                        |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               | DL                                                                                                                                                                |                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            | _                                                                                      | 5                                                                                                          | 15                                                          | 5                                                          | 1                                                       | 15                                                            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                             |                      |                        | 15                   | 15                      | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                               | Both >                                                                                                                                                            | PQL?                                                                                                                    | Yes (contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nue)                                                                       | Yes (c                                                                                 | ntinue)                                                                                                    | Yes (co                                                     | ntinue)                                                    | Yes (co                                                 | ontinue)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                        | Yes (continue)       | Yes (continue)          | Yes (continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Duplicate Analysis                                                                            | Both >5                                                                                                                                                           | TDL?                                                                                                                    | No-Stop (acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eptable)                                                                   | No-Stop (                                                                              | (cceptable)                                                                                                | <del></del>                                                 |                                                            | No-Stop (a                                              | acceptable                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | No-Stop (acceptable) | No-Stop (acceptable)   | Yes (calc RPD)       | Yes (calc RPD)          | No-Stop (accepta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Duplicate Alialysis                                                                           | RP                                                                                                                                                                | )                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                        | 128.8%               | 144.4%                  | No - acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                                                                   |                                                                                                                         | Yes - assess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | further                                                                    |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                        | Not applicable       | Not applicable          | No-Stop (accepta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                               |                                                                                                                                                                   |                                                                                                                         | <del></del> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |                                                                                        |                                                                                                            | <del></del>                                                 |                                                            |                                                         |                                                               | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |                      |                        | Yes (continue)       | Yes (continue)          | 140-Stop (accepte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Split Analysis                                                                                |                                                                                                                                                                   |                                                                                                                         | Yes (calc F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RPD)                                                                       | <del></del>                                                                            |                                                                                                            | ,                                                           |                                                            | No-Stop (                                               | acceptable                                                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RPD)                                        |                      | <del></del>            | Yes (calc RPD)       | Yes (calc RPD)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Opin / maryoro                                                                                |                                                                                                                                                                   |                                                                                                                         | 45.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                          |                                                                                        |                                                                                                            | <del>}</del>                                                |                                                            | <u> </u>                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                        | 0.0%                 | 35.4%<br>Not applicable | Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                               | Difference                                                                                                                                                        | > 2 TDL?                                                                                                                | Not applica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | able                                                                       | Not ap                                                                                 | plicable                                                                                                   | Not app                                                     | licable                                                    | Yes - ass                                               | sess further                                                  | Not applica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | able                                        | Not applicable       | Not applicable         | Not applicable       | Not applicable          | 140t applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dunlineta/Calit Apolyo                                                                        | in 100 D 77                                                                                                                                                       | 100 D.62 10                                                                                                             | M D 92:1 Even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | votion (E)                                                                 | vc/                                                                                    |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                        |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate/Split Analys                                                                        | S - 100-D-77,                                                                                                                                                     | 100-0-62, 10                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        | inthracene                                                                                                 | Benzo(a)pyre                                                | ne (Method                                                 | Benzo(b)fl                                              | luoranthen                                                    | e Benzo(ahi)pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | erviene                                     | Chrysene (Method     | Dibenz(a,h)anthracene  | Fluoranthene (Method | Fluorene (Method 9270)  | Indeno(1,2,3-cd)p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sampling                                                                                      | HEIS                                                                                                                                                              | Sample                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            | 1 ' ' ' '                                                   | •                                                          | , , ,                                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                           |                      |                        | 8270)                | Fluorene (Method 8270)  | (Method 8270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Area                                                                                          | Number                                                                                                                                                            | Date                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | <del></del>          |                        | ug/kg Q PQL          | ug/kg Q PQL             | ug/kg Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EXC-3                                                                                         |                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        | _                                                                                                          |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                        | 3700 34              | 580 17                  | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Duplicate of J1PW83                                                                           |                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                          | 170 J 27             | 19 J 19                | 340 36               | 64 J 18                 | 47 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Split of J1PW83                                                                               |                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 648                                         | 402 JD 648           | 648 UD 648             | 737 D 648            | 142 JD 648              | 120 JD (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Analysis:                                                                                     | •                                                                                                                                                                 |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                        |                      |                         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                               | DL                                                                                                                                                                |                                                                                                                         | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                            | €                                                                                      | 60                                                                                                         | 66                                                          | 0                                                          |                                                         |                                                               | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                           |                      |                        | 660                  | 660                     | 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                               | Date   Originator N. K. Schiffern   VA   Date   Originator   N. K. Schiffern   VA   Decided   Job No.   14655   Calc. No.   101000-C24-V0508   Rev. No.   07011/3 |                                                                                                                         | Yes (continue)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes (continue)                                                             | Yes (continue                                                                          |                                                                                                            |                                                             |                                                            |                                                         |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                        |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate Analysis                                                                            |                                                                                                                                                                   |                                                                                                                         | No-Stop (acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eptable)                                                                   | No-Stop (                                                                              | acceptable)                                                                                                | No-Stop (a                                                  | cceptable)                                                 | No-Stop (                                               | acceptable                                                    | No-Stop (acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eptable)                                    | No-Stop (acceptable) |                        | No-Stop (acceptable) | No-Stop (acceptable)    | No-Stop (accepta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Duplicate Allalysis                                                                           |                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | <u> </u>                                                                               |                                                                                                            |                                                             |                                                            | <u> </u>                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      | 1                      | V further            | No - acceptable         | No - acceptabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                               |                                                                                                                                                                   |                                                                                                                         | No - accepf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            | <del></del>                                                                            |                                                                                                            |                                                             |                                                            | Yes - ass                                               | sess further                                                  | No - accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | table                                       |                      |                        | Yes - assess further | No-Stop (acceptable)    | No-Stop (accepta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                               | I Both >                                                                                                                                                          | POL?!                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             | reentaniet                                                 | N 01 /                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                      |                        |                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               |                                                                                                                                                                   |                                                                                                                         | No-Stop (acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eptable)                                                                   | No-Stop (                                                                              | acceptable)                                                                                                | 100-Stop (a                                                 |                                                            | No-Stop (                                               | (acceptable                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eptable)                                    | No-Stop (acceptable) | 140-Stop (acceptable)  | Yes (continue)       | 140-Stop (acceptable)   | THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S |
| Split Analysis                                                                                | Both >5                                                                                                                                                           | cTDL?                                                                                                                   | No-Stop (acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eptable)                                                                   | No-Stop (                                                                              | acceptable)                                                                                                | 140-Stop (a                                                 |                                                            | No-Stop (                                               | acceptable                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eptable)                                    | No-Stop (acceptable) | 140-Stop (acceptable)  | No-Stop (acceptable) | 140-Stop (acceptable)   | 110 510 712 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Split Analysis                                                                                | Both >5                                                                                                                                                           | TDL?                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               | No-Stop (acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Split Analysis                                                                                | Both >5                                                                                                                                                           | TDL?                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                                                        |                                                                                                            |                                                             |                                                            |                                                         |                                                               | No-Stop (acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |                      |                        | <del></del>          | No - acceptable         | No - acceptabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                               | Both >5.<br>RP<br>Difference                                                                                                                                      | O 2 TDL?                                                                                                                | No - accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otable                                                                     | Yes - ass                                                                              |                                                                                                            |                                                             |                                                            |                                                         |                                                               | No-Stop (acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               | Both >5<br>RP<br>Difference                                                                                                                                       | TDL?<br>D<br>> 2 TDL?<br>100-D-62, 10                                                                                   | No - accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otable                                                                     | Yes - ass                                                                              | ess further                                                                                                | No - acc                                                    | eptable                                                    | Yes - ass                                               | sess further                                                  | No-Stop (acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | table                                       |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                               | Both >5<br>RP<br>Difference                                                                                                                                       | TDL?<br>D<br>> 2 TDL?<br>100-D-62, 10                                                                                   | No - accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otable<br>vation (E)                                                       | Yes - ass                                                                              | ess further                                                                                                | No - acc                                                    | eptable                                                    | Yes - ass                                               | sess further                                                  | No-Stop (acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | table                                       |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate/Split Analys                                                                        | Both >5<br>RP<br>Difference<br>is - 100-D-77,<br>HEIS                                                                                                             | TDL? D > 2 TDL? 100-D-62, 10 Sample                                                                                     | No - accept<br>00-D-83:1 Excav<br>Phenanthrene<br>8270)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vation (E)                                                                 | Yes - ass<br>XC)<br>Pyrene (M                                                          | ess further<br>ethod 8270)                                                                                 | No - acc                                                    | eptable  phthalene PQL                                     | Yes - ass                                               | sess further                                                  | No-Stop (accept  No - accept  Dibenzofu  ug/kg Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | table<br>iran                               |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate/Split Analys                                                                        | Both >5 RP Difference is - 100-D-77, HEIS Number J1PW83                                                                                                           | TDL? D > 2 TDL? 100-D-62, 10 Sample Date 9/18/2012                                                                      | No - accept 00-D-83:1 Excav Phenanthrene 8270) ug/kg Q 3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vation (E) (Method) PQL 16                                                 | Yes - ass XC) Pyrene (M ug/kg 2900                                                     | ess further ethod 8270) Q PQL 12                                                                           | 2-Methylna ug/kg (                                          | eptable  phthalene  PQL  18                                | Yes - ass Cart                                          | bazole  Q PQ                                                  | No-Stop (acception of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of | iran PQL 19                                 |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampling Area EXC-3 Duplicate of J1PW83                                                       | Both >5 RP Difference is - 100-D-77, HEIS Number J1PW83 J1PW93                                                                                                    | TDL? D > 2 TDL? 100-D-62, 10 Sample Date 9/18/2012 9/18/2012                                                            | No - accept 00-D-83:1 Excav Phenanthrene 8270) ug/kg Q 3900 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vation (E) (Method) PQL 16 17                                              | Yes - ass XC)  Pyrene (M                                                               | ess further ethod 8270) Q PQL 12 J 12                                                                      | 2-Methylna ug/kg (120 20 20 40                              | eptable  phthalene  PQL 18 19                              | Yes - ass  Cart  ug/kg  570  42                         | bazole  Q PQ 34 J 36                                          | No-Stop (acception of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of | ran PQL 19 20                               |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampling Area EXC-3 Duplicate of J1PW83 Split of J1PW83                                       | Both >5 RP Difference is - 100-D-77, HEIS Number J1PW83 J1PW93                                                                                                    | TDL? D > 2 TDL? 100-D-62, 10 Sample Date 9/18/2012 9/18/2012                                                            | No - accept 00-D-83:1 Excav Phenanthrene 8270) ug/kg Q 3900 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vation (E) (Method) PQL 16 17                                              | Yes - ass XC)  Pyrene (M                                                               | ess further ethod 8270) Q PQL 12 J 12                                                                      | 2-Methylna ug/kg (120 20 20 40                              | eptable  phthalene  PQL 18 19                              | Yes - ass  Cart  ug/kg  570  42                         | bazole  Q PQ 34 J 36                                          | No-Stop (acception of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of | ran PQL 19 20                               |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate/Split Analys  Sampling Area  EXC-3  Duplicate of J1PW83  Split of J1PW83  Analysis: | Both >5 RP Difference is - 100-D-77, HEIS Number J1PW83 J1PW93 J1PWF8                                                                                             | TDL? D > 2 TDL? 100-D-62, 10 Sample Date 9/18/2012 9/18/2012                                                            | No - accept  00-D-83:1 Excav  Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vation (E) (Method) PQL 16 17 648                                          | Yes - ass  XC)  Pyrene (M  ug/kg  2900  270  664                                       | ess further  ethod 8270)  Q PQL                                                                            | 2-Methylna ug/kg (120 20 648 U                              | phthalene D PQL J 18 J 19 D 648                            | Ves - ass  Cart  ug/kg  570  42  648                    | bazole  Q PQ 34 J 36 UD 644                                   | No-Stop (accept  No - accept  Dibenzofu  ug/kg Q  340  53 J  121 J D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ran PQL 19 20                               |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate/Split Analys  Sampling Area  EXC-3  Duplicate of J1PW83  Split of J1PW83  Analysis: | Both >5 RP Difference is - 100-D-77, HEIS Number J1PW83 J1PW93 J1PWF8                                                                                             | TDL? D > 2 TDL? 100-D-62, 10 Sample Date 9/18/2012 9/18/2012                                                            | No - accept  00-D-83:1 Excav  Phenanthrene 8270) ug/kg Q 3900 360 784 D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vation (E) (Method) PQL 16 17 648                                          | Yes - ass  XC)  Pyrene (M  ug/kg  2900  270  664                                       | ess further  ethod 8270)  Q PQL                                                                            | 2-Methylna ug/kg (120 20 648 U                              | phthalene D PQL J 18 J 19 D 648                            | Ves - ass  Cark  ug/kg  570  42  648                    | bazole  Q PQ 34 J 36 UD 644                                   | No-Stop (accept  No - accept  Dibenzofu  ug/kg Q  340 53 J  121 J D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PQL<br>19<br>20<br>648                      |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate/Split Analys  Sampling Area  EXC-3  Duplicate of J1PW83  Split of J1PW83  Analysis: | Both >5 RP Difference is - 100-D-77, HEIS Number J1PW83 J1PW93 J1PWF8  TOL Both >                                                                                 | TDL? D > 2 TDL? 100-D-62, 10 Sample Date 9/18/2012 9/18/2012 9/18/2012                                                  | No - accept  00-D-83:1 Excav  Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vation (E) (Method) PQL 16 17 648                                          | Yes - ass  XC)  Pyrene (M  ug/kg  2900  270  664  Yes (c                               | ess further  ethod 8270)  Q                                                                                | 2-Methylna ug/kg ( 120 20 648 U 666 Yes (co                 | phthalene PQL 18 19 0 648                                  | Yes - ass  Cart  ug/kg  570  42  648  Yes (c)           | bazole  Q PQ 34 J 36 UD 644  Secontinue)                      | No-Stop (accept   No - accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PQL<br>19<br>20<br>648                      |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate/Split Analys  Sampling Area  EXC-3  Duplicate of J1PW83  Split of J1PW83  Analysis: | Both >5 RP Difference is - 100-D-77, HEIS Number J1PW83 J1PW93 J1PWF8  DL Both > 5                                                                                | TDL?  D > 2 TDL?  100-D-62, 10  Sample  Date  9/18/2012  9/18/2012  9/18/2012  PQL?  xTDL?                              | No - accept  00-D-83:1 Excav  Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vation (E) (Method) PQL 16 17 648                                          | Yes - ass  XC)  Pyrene (M  ug/kg  2900  270  664  Yes (c                               | ess further  ethod 8270)  Q                                                                                | 2-Methylna ug/kg ( 120 20 648 U 666 Yes (co                 | phthalene PQL 18 19 0 648                                  | Yes - ass  Cart  ug/kg  570  42  648  Yes (c)           | bazole  Q PQ 34 J 36 UD 644  Secontinue)                      | No-Stop (accept   No - accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PQL<br>19<br>20<br>648                      |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampling Area EXC-3 Duplicate of J1PW83 Split of J1PW83 Analysis:                             | Both >5                                                                                                                                                           | CTDL? D > 2 TDL? 100-D-62, 10 Sample Date 9/18/2012 9/18/2012 9/18/2012 PQL? KTDL? D                                    | No - accept  00-D-83:1 Excav  Phenanthrene 8270) ug/kg Q 3900 360 784 D  660 Yes (contin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vation (E) (Method) PQL 16 17 648 inue)                                    | Yes - ass  XC)  Pyrene (M  ug/kg  2900  270  664  Yes (c  No-Stop (                    | ess further  ethod 8270)  Q PQL 12 12 D 648  60 continue) acceptable)                                      | 2-Methylna                                                  | phthalene PQL 18 19 0 648 0 ontinue)                       | Yes - ass  Cart  ug/kg  570  42  648  Yes (c  No-Stop ( | bazole  Q PQ 34 J 36 UD 644 660 continue)                     | No-Stop (accept   No - accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PQL<br>19<br>20<br>648<br>nue)              |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampling Area EXC-3 Duplicate of J1PW83 Split of J1PW83 Analysis:                             | Both >5 RP Difference is - 100-D-77, HEIS Number J1PW83 J1PW93 J1PWF8  DL Both > 5 RP Difference                                                                  | CTDL? D > 2 TDL? 100-D-62, 10 Sample Date 9/18/2012 9/18/2012 9/18/2012 PQL? XTDL? D > 2 TDL?                           | No - accept  00-D-83:1 Excav  Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vation (EX) (Method) PQL 16 17 648  inue) eptable)                         | Yes - ass  XC)  Pyrene (M  ug/kg  2900  270  664  Yes (c  No-Stop ()  Yes - ass        | ess further  ethod 8270)  Q PQL 12 12 D 648 60 continue) acceptable) ess further                           | 2-Methylna ug/kg (120 20 648 U  Yes (co No-Stop (a          | phthalene D PQL D 18 D 19 D 648 O mitinue) cceptable       | Yes - ass  Cart  ug/kg  570  42  648  Yes (c  No-Stop ( | bazole  Q PQ 34 J 36 UD 644 660 continue) (acceptable         | No-Stop (acception of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of | PQL<br>19<br>20<br>648<br>nue)<br>eptable)  |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampling Area EXC-3 Duplicate of J1PW83 Split of J1PW83 Analysis:  Duplicate Analysis         | Both >5                                                                                                                                                           | TDL? D > 2 TDL? 100-D-62, 10 Sample Date 9/18/2012 9/18/2012 9/18/2012 9/18/2012 PQL? xTDL? D > 2 TDL? PQL?             | No - accept  Oo-D-83:1 Excav  Phenanthrene 8270) ug/kg Q 3900 360 784 D  660 Yes (contil No-Stop (acce  Yes - assess Yes (contil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vation (EX) (Method) PQL 16 17 648  inue) eptable)                         | Yes - ass  XC)  Pyrene (M  ug/kg  2900  270  664  Yes (c  No-Stop (  Yes - ass  Yes (c | ess further  ethod 8270)  Q PQL 12 12 D 648  60 continue) acceptable)  ess further continue)               | 2-Methylna ug/kg (120 20 648 U  Yes (co No-Stop (a          | phthalene D PQL D 18 D 19 D 648 O mitinue) cceptable       | Yes - ass  Cart  ug/kg  570  42  648  Yes (c  No-Stop ( | bazole  Q PQ 34 J 36 UD 644 660 continue) (acceptable         | No-Stop (acception of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of | PQL<br>19<br>20<br>648<br>nue)<br>eptable)  |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Duplicate/Split Analys  Sampling Area  EXC-3  Duplicate of J1PW83  Split of J1PW83  Analysis: | Both >5 RP Difference is - 100-D-77, HEIS Number J1PW83 J1PW93 J1PWF8  DL Both >5 RP Difference Both > 5 Both > 5                                                 | TDL? D > 2 TDL? 100-D-62, 10 Sample Date 9/18/2012 9/18/2012 9/18/2012 PQL? xTDL? D > 2 TDL? PQL? xTDL? PQL?            | No - accept  Oo-D-83:1 Excav  Phenanthrene 8270) ug/kg Q 3900 360 784 D  660 Yes (contil No-Stop (acce  Yes - assess Yes (contil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vation (EX) (Method) PQL 16 17 648  inue) eptable)                         | Yes - ass  XC)  Pyrene (M  ug/kg  2900  270  664  Yes (c  No-Stop (  Yes - ass  Yes (c | ess further  ethod 8270)  Q PQL 12 12 D 648  60 continue) acceptable)  ess further continue)               | 2-Methylna ug/kg (120 20 648 U  Yes (co No-Stop (a          | phthalene D PQL D 18 D 19 D 648 O mitinue) cceptable       | Yes - ass  Cart  ug/kg  570  42  648  Yes (c  No-Stop ( | bazole  Q PQ 34 J 36 UD 644 660 continue) (acceptable         | No-Stop (acception of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of | PQL<br>19<br>20<br>648<br>nue)<br>eptable)  |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampling Area EXC-3 Duplicate of J1PW83 Split of J1PW83 Analysis:  Duplicate Analysis         | Both >5 RP Difference is - 100-D-77, HEIS Number J1PW83 J1PW93 J1PWF8  DL Both > Both > Both > 6 RP Difference Both > 5 RP                                        | TDL? D > 2 TDL? 100-D-62, 10 Sample Date 9/18/2012 9/18/2012 9/18/2012 PQL? xTDL? D > 2 TDL? PQL? xTDL? D > 2 TDL? PQL? | No - accept  O0-D-83:1 Excav  Phenanthrene 8270) ug/kg Q 3900 360 784 D  660 Yes (continue No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No-Stop (accept No- | vation (E) (Method) PQL 16 17 648  inue) eptable) s further inue) eptable) | Yes - ass  XC)  Pyrene (M  ug/kg  2900  270  664  Yes (c  No-Stop (                    | ess further  ethod 8270)  Q PQL 12 J 12 D 648  60 continue) acceptable)  ess further continue) acceptable) | 2-Methylna  ug/kg (120 ) 20 (48 ) 648 U  Yes (co No-Stop (a | phthalene D PQL D 18 D 648 Continue) Coceptable Coceptable | Yes - ass  Cart  ug/kg 570 42 648  Yes (c  No-Stop (    | bazole  Q PQ 34 J 36 UD 644 continue) (acceptable (acceptable | No-Stop (acception of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of | PQL 19 20 648  nue) eptable) table eptable) |                      |                        | No-Stop (acceptable) |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                       |                         |                                                              |                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | CALCULATIO                                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                           |                                                |                                                         |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------------------------|
| Washington Closure Ha                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N. K. Schiffe                                                                  | rn M                                                                  | )                       |                                                              |                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                                                            | 07/01/13                                   |                                                | Calc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No. 0100                                     | D-CA-V050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28 4                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rev. No.                                               | 0                                         |                                                |                                                         |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                       | _                       |                                                              |                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Job No.                                                                         | 14655                                      | <del></del>                                    | Chec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | D. Skoglie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 07/01/13                                  | _                                              |                                                         |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100-D Field                                                                    |                                                                       |                         |                                                              | 00                                     | 01 \/:                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                            |                                                | Chec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | keu J.                                       | D. Skoglie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | 24 of 24                                  |                                                |                                                         |
|                                                                              | Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100-D-77, 10                                                                   | 00-D-62, and                                                          | 1 100-L                 | 0-83:1 W                                                     | aste Sites                             | Cleanup Verif                                                                          | ication 95% U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JL Calculat                                                                     | ions                                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sileet No.                                             | 24 01 24                                  |                                                |                                                         |
| Duplicate/Split Analysis                                                     | s - 100-D-77,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100-D-62, 100                                                                  | D-D-83:1 Sta                                                          | aging !                 | Pile Area                                                    | a (SPA)                                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                           |                                                |                                                         |
| Sampling                                                                     | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample                                                                         |                                                                       | minum                   |                                                              |                                        | rsenic                                                                                 | Bariu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ım                                                                              | Beryl                                      | lium                                           | Cadı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mium                                         | Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | alcium                                                                       | Chro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                           | balt                                           | Copper                                                  |
| Area                                                                         | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date                                                                           |                                                                       |                         | PQL                                                          | mg/kg                                  | Q PQL                                                                                  | mg/kg Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PQL                                                                             | mg/kg G                                    | PQL                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q PQL                                        | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q PQL                                                                        | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PQL                                                    | mg/kg                                     | Q PQL                                          | mg/kg Q PC                                              |
| SPA-5                                                                        | J1R645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/8/2013                                                                       | 5150                                                                  | X                       | 1.4                                                          | 2.4                                    | 0.60                                                                                   | 52.2 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 | 0.21                                       | 0.030                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B 0.037                                      | 6290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.053                                                  | 7.6                                       | X 0.091                                        | 14.6 X 0.2                                              |
| Duplicate of J1R645                                                          | J1R653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/8/2013                                                                       |                                                                       | X                       | 1.4                                                          | 2.3                                    | 0.60                                                                                   | 43.9 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 | 0.21                                       | 0.030                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B 0.037                                      | 5750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X 12.8                                                                       | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.053                                                  | 7.1                                       | X 0.091                                        | 14.0 X 0.2                                              |
| Split of J1R645                                                              | J1R670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/8/2013                                                                       | 4880                                                                  |                         | 29.7                                                         | 2.6                                    | 0.67                                                                                   | 51.4 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                               | 0.36 E                                     |                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U 0.21                                       | 6290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.2                                                                         | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.65                                                   |                                           | B 2.0                                          | 13.2 1.                                                 |
| Analysis:                                                                    | 0111070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47072010                                                                       | 4000                                                                  |                         | 20.7                                                         | 2.0                                    | 0.0.                                                                                   | 0 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , 0.00                                                                          | 0.00                                       |                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                           |                                                |                                                         |
|                                                                              | DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                              |                                                                       | 5                       |                                                              |                                        | 10                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | 0.:                                        | 2                                              | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ).2                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                      |                                           | 2                                              | 1                                                       |
| i                                                                            | Both >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POL 2                                                                          | Ves In                                                                | continu                 | ie)                                                          | Yes (                                  | continue)                                                                              | Yes (con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | Yes (co                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ontinue)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | continue)                                                                    | Yes (co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ntinue)                                                | Yes (ce                                   | ontinue)                                       | Yes (continue)                                          |
|                                                                              | Both >5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                       | calc RF                 |                                                              |                                        | (acceptable)                                                                           | Yes (calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 | No-Stop (a                                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acceptable)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | calc RPD)                                                                    | Yes (ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | No-Stop (                                 | acceptable)                                    | Yes (calc RPD)                                          |
| Duplicate Analysis                                                           | RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |                                                                       | 9.3%                    | -                                                            | 140-Otop                               | (acceptable)                                                                           | 17.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | 140-Otop (ad                               | осортавле)                                     | 110 0100 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | accoptable)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0%                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1%                                                     |                                           |                                                | 4.2%                                                    |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                       |                         | coontable                                                    | Not appl                               |                                                                                        | No - acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ontable                                                                         | No - 20                                    | ceptable                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | applicable                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | plicable                                                                     | No - ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ceptable                                               | Not applicable                            |                                                |                                                         |
|                                                                              | Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - inner                                                                        |                                                                       |                         |                                                              |                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acceptable)                                  | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (continue)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ntinue)                                                |                                           | ontinue)                                       | Yes (continue)                                          |
| à                                                                            | Both >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |                                                                       | continu                 |                                                              |                                        | continue)                                                                              | Yes (con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 | No-Stop (a                                 | cceptable)                                     | 140-310h (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | acceptable)                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lc RPD)                                                | -                                         | acceptable)                                    | Yes (calc RPD)                                          |
| Split Analysis                                                               | Both >5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                |                                                                       | calc RF                 | (ט־                                                          | 140-2tob                               | (acceptable)                                                                           | Yes (calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |                                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | calc RPD)<br>0.0%                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3%                                                     | 140-0100 (                                | acceptable)                                    | 10.1%                                                   |
|                                                                              | RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                |                                                                       | 5.4%                    |                                                              | NI                                     | 7.11                                                                                   | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 |                                            |                                                | Not an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - Castela                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | No ac                                     | ceptable                                       | Not applicable                                          |
|                                                                              | Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | > 2 TUL?                                                                       | Not a                                                                 | applicab                | oie                                                          | NO - 8                                 | acceptable                                                                             | Not appl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cable                                                                           | No - acc                                   | epiable                                        | 1 Not ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | plicable                                     | l Not a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | applicable                                                                   | т мог ар                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | plicable                                               | 140 - ac                                  | ceptable                                       | 1 Tot applicable                                        |
| Duplicate/Split Analysi                                                      | is - 100-D-77,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100-D-62, 10                                                                   | 0-D-83:1 St                                                           | aging                   | Pile Are                                                     | a (SPA)                                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | ·                                         |                                                | 1                                                       |
|                                                                              | HEIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample                                                                         | Hexavale                                                              | nt Chr                  | omium                                                        |                                        | Iron                                                                                   | Lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d                                                                               | Magne                                      | esium                                          | Mano                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | anese                                        | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lercury                                                                      | Nic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kel                                                    | Pota                                      | ssium                                          | Silicon                                                 |
| Sampling                                                                     | TILIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jampie                                                                         |                                                                       |                         |                                                              |                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | -                                         | - T                                            | "   0   50                                              |
| Area                                                                         | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date                                                                           | mg/kg                                                                 | Q                       | PQL                                                          | mg/kg                                  | Q PQL                                                                                  | mg/kg Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |                                            | PQL                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q PQL                                        | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q PQL                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q PQL                                                  | mg/kg                                     |                                                | mg/kg Q PC                                              |
| SPA-5                                                                        | J1R645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/8/2013                                                                       | 0.205                                                                 |                         | 0.155                                                        | 20500                                  | X 3.5                                                                                  | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.25                                                                            |                                            | 3.4                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X 0.091                                      | 0.0096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 0.0058                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X 0.11                                                 | 786                                       | 37.5                                           | 104 N 5                                                 |
| Duplicate of J1R645                                                          | J1R653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/8/2013                                                                       | 0.226                                                                 |                         | 0.155                                                        | 20100                                  | X 3.4                                                                                  | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.24                                                                            | 3790                                       | 3.4                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X 0.091                                      | 0.0088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X 0.11                                                 | 735                                       | 37.2                                           | 137 N 5                                                 |
| Split of J1R645                                                              | J1R670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/8/2013                                                                       | 0.16                                                                  | В                       | 0.10                                                         | 18400                                  | 6.3                                                                                    | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.36                                                                            | 3830                                       | 17.6                                           | 263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 0.33                                       | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B 0.011                                                                      | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.48                                                   | 837                                       | BN 715                                         | 1100 8                                                  |
| Analysis:                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                       |                         |                                                              |                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                            |                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                           | (00                                            | 1 0                                                     |
|                                                                              | TDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                       | 0.5                     |                                                              |                                        | 5                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | 7.                                         |                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                      |                                           | 100                                            | 2                                                       |
|                                                                              | Both >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQL?                                                                           | Yes (                                                                 | continu                 | ue)                                                          |                                        | continue)                                                                              | Yes (cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | itinue)                                                                         | Yes (co                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ontinue)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (continue)                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ontinue)                                               |                                           | ontinue)                                       | Yes (continue                                           |
| Duplicate Analysis                                                           | Both >5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xTDL?                                                                          | No-Stop                                                               | (accep                  | table)                                                       |                                        | calc RPD)                                                                              | No-Stop (ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :ceptable)                                                                      | Yes (cal                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alc RPD)                                     | No-Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (acceptable)                                                                 | No-Stop (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | acceptable)                                            | No-Stop (                                 | acceptable)                                    | Yes (calc RPD                                           |
| Duplicate Allalysis                                                          | RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D O                                                                            |                                                                       |                         |                                                              |                                        | 2.0%                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | 6.1                                        |                                                | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3%                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                           |                                                | 27.4%                                                   |
|                                                                              | Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | > 2 TDL?                                                                       | No - a                                                                | accepta                 | ble                                                          | Not a                                  | applicable                                                                             | No - acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eptable                                                                         | Not app                                    | licable                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | plicable                                     | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | acceptable                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ceptable                                               |                                           | ceptable                                       | Not applicable                                          |
|                                                                              | Both >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PQL?                                                                           | Yes (                                                                 | contin                  | ue)                                                          | Yes (                                  | continue)                                                                              | Yes (cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ıtinue)                                                                         | Yes (co                                    | ntinue)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ontinue)                                     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (continue)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ontinue)                                               |                                           | ontinue)                                       | Yes (continue                                           |
| Onlik Amakasia                                                               | Both >5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | xTDL?                                                                          | No-Stop                                                               | (accer                  | otable)                                                      | Yes (                                  | calc RPD)                                                                              | No-Stop (ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ceptable)                                                                       | Yes (ca                                    | c RPD)                                         | Yes (ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | alc RPD)                                     | No-Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (acceptable)                                                                 | No-Stop (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | acceptable)                                            | No-Stop (                                 | acceptable)                                    | Yes (calc RPD                                           |
| Split Analysis                                                               | RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PD O                                                                           |                                                                       |                         |                                                              |                                        | 10.8%                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | 5.1                                        | %                                              | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1%                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                           |                                                | 165.4%                                                  |
|                                                                              | Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | > 2 TDL?                                                                       | No - a                                                                | accepta                 | ble                                                          | Not a                                  | applicable                                                                             | No - acce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eptable                                                                         | Not app                                    | olicable                                       | Not ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | plicable                                     | No -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | acceptable                                                                   | No - ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ceptable                                               | No - ad                                   | cceptable                                      | Not applicable                                          |
| Duplicate/Split Analysi                                                      | is - 100-D-77.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100-D-62, 10                                                                   | 0-D-83:1 St                                                           | taging                  | Pile Are                                                     | ea (SPA)                               |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                           |                                                |                                                         |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                       |                         |                                                              |                                        | nadium                                                                                 | Zin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                                                                               | Chlo                                       | ride                                           | Nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in Nitrate                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in Nitrite and<br>Nitrate                                                    | Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fate                                                   | TPH                                       | - Diesel                                       | TPH - Diesel EX                                         |
| Compline                                                                     | HEIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample                                                                         | S                                                                     | odium                   |                                                              | 1                                      |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |                                            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mac                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0   001                                                | 1 (tem 1                                  | Q PQL                                          | ug/kg Q P                                               |
| Sampling<br>Area                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                       |                         | PQL                                                          |                                        | Q PQL                                                                                  | ma/ka Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PQL                                                                             | mg/kg (                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q PQL                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q PQL                                                                        | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q PQL                                                  | ug/kg                                     |                                                |                                                         |
| Area                                                                         | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date                                                                           | mg/kg                                                                 | ture -                  | PQL<br>54.0                                                  | mg/kg                                  | Q PQL X 0.086                                                                          | mg/kg Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                 | mg/kg (                                    | PQL 2.0                                        | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q PQL<br>B 0.32                              | mg/kg<br>0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Q PQL<br>C 0.31                                                              | mg/kg<br>11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q PQL<br>1.8                                           |                                           | JB 700                                         | 5700 B 10                                               |
| Area<br>SPA-5                                                                | Number<br>J1R645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date 4/8/2013                                                                  | mg/kg                                                                 |                         | 54.0                                                         | mg/kg<br>52.6                          | X 0.086                                                                                | 38.5 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.36                                                                            | 5.9                                        | 2 PQL<br>2.0                                   | mg/kg 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B 0.32                                       | mg/kg<br>0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C 0.31                                                                       | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | 3900                                      |                                                | 5700 B 10<br>6800 B 9                                   |
| Area<br>SPA-5<br>Duplicate of J1R645                                         | Number<br>J1R645<br>J1R653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date<br>4/8/2013<br>4/8/2013                                                   | mg/kg<br>275<br>219                                                   |                         | 54.0<br>53.5                                                 | mg/kg                                  |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.36                                                                            |                                            | PQL                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | mg/kg<br>0.85<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8                                                    | 3900<br>4500                              | JB 700                                         |                                                         |
| Area SPA-5 Duplicate of J1R645 Split of J1R645                               | Number<br>J1R645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date 4/8/2013                                                                  | mg/kg                                                                 | Q                       | 54.0                                                         | mg/kg<br>52.6<br>49.5                  | X 0.086<br>X 0.085                                                                     | 38.5 X<br>37.8 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.36                                                                            | 5.9<br>6.5                                 | 2.0<br>2.0                                     | mg/kg 1.2 1.3 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B 0.32<br>B 0.32<br>0.042                    | mg/kg<br>0.85<br>1.1<br>0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C 0.31<br>C 0.31<br>NC 0.047                                                 | 11.4<br>11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8<br>1.8                                             | 3900<br>4500<br>350                       | JB 700<br>B 670<br>U 350                       | 6800 B 9                                                |
| Area SPA-5 Duplicate of J1R645 Split of J1R645 Analysis:                     | Number<br>J1R645<br>J1R653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date<br>4/8/2013<br>4/8/2013                                                   | mg/kg<br>275<br>219                                                   | Q                       | 54.0<br>53.5                                                 | mg/kg<br>52.6<br>49.5<br>44.8          | X 0.086<br>X 0.085<br>N 2.7                                                            | 38.5 X<br>37.8 X<br>37.4 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.36<br>0.36<br>1 4.2                                                           | 5.9<br>6.5<br>5.0                          | 2.0<br>2.0<br>2.0<br>0.21                      | mg/kg   1.2   1.3   0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B 0.32<br>B 0.32<br>0.042                    | mg/kg<br>0.85<br>1.1<br>0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C 0.31<br>C 0.31<br>NC 0.047                                                 | 11.4<br>11.9<br>11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8<br>1.8<br>0.52                                     | 3900<br>4500<br>350                       | JB 700<br>B 670<br>U 350                       | 6800 B 9                                                |
| Area SPA-5 Duplicate of J1R645 Split of J1R645 Analysis:                     | Number<br>J1R645<br>J1R653<br>J1R670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date<br>4/8/2013<br>4/8/2013                                                   | mg/kg<br>275<br>219<br>279                                            | Q N                     | 54.0<br>53.5<br>99.9                                         | mg/kg<br>52.6<br>49.5<br>44.8          | X 0.086<br>X 0.085<br>N 2.7                                                            | 38.5 X<br>37.8 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.36<br>0.36<br>1 4.2                                                           | 5.9<br>6.5<br>5.0                          | 2.0<br>2.0<br>2.0<br>0.21                      | mg/kg   1.2   1.3   0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B 0.32<br>B 0.32<br>0.042                    | mg/kg<br>0.85<br>1.1<br>0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C 0.31<br>C 0.31<br>NC 0.047                                                 | 11.4<br>11.9<br>11.5<br>Yes (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8<br>1.8<br>0.52<br>5<br>ontinue)                    | 3900<br>4500<br>350<br>Yes (d             | JB 700<br>B 670<br>U 350                       | 5000<br>Yes (continue                                   |
| Area SPA-5 Duplicate of J1R645 Split of J1R645 Analysis:                     | Number<br>J1R645<br>J1R653<br>J1R670<br>TDL<br>Both >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date 4/8/2013 4/8/2013 4/8/2013 PQL?  EXTDL?                                   | mg/kg<br>275<br>219<br>279                                            | N<br>50<br>(contin      | 54.0<br>53.5<br>99.9<br>ue)                                  | mg/kg<br>52.6<br>49.5<br>44.8<br>Yes   | X 0.086<br>X 0.085<br>N 2.7<br>2.5<br>(continue)<br>(calc RPD)                         | 38.5 X<br>37.8 X<br>37.4 N<br>Yes (cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.36<br>0.36<br>1 4.2<br>ntinue)                                                | 5.9<br>6.5<br>5.0                          | 2.0<br>2.0<br>2.0<br>0.21                      | mg/kg 1.2 1.3 0.60 Yes (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B 0.32<br>B 0.32<br>0.042                    | mg/kg<br>0.85<br>1.1<br>0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C 0.31<br>C 0.31<br>NC 0.047                                                 | 11.4<br>11.9<br>11.5<br>Yes (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8<br>1.8<br>0.52                                     | 3900<br>4500<br>350<br>Yes (d             | JB 700<br>B 670<br>U 350                       | 6800 B 9                                                |
| Area SPA-5 Duplicate of J1R645 Split of J1R645 Analysis:                     | Number J1R645 J1R653 J1R670  TDL  Both > Both > RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date 4/8/2013 4/8/2013 4/8/2013 PQL? 5xTDL?                                    | mg/kg<br>275<br>219<br>279<br>Yes (<br>No-Stop                        | N<br>50<br>(contin      | 54.0<br>53.5<br>99.9<br>ue)<br>otable)                       | mg/kg<br>52.6<br>49.5<br>44.8<br>Yes ( | X 0.086<br>X 0.085<br>N 2.7<br>2.5<br>(continue)<br>calc RPD)<br>6.1%                  | 38.5 X<br>37.8 X<br>37.4 N<br>Yes (cor<br>Yes (cal-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.36<br>0.36<br>1 4.2<br>ntinue)<br>c RPD)                                      | 5.9<br>6.5<br>5.0<br>Yes (co               | 2 PQL<br>2.0<br>2.0<br>0.21                    | mg/kg 1.2 1.3 0.60  Yes (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B 0.32<br>B 0.32<br>0.042                    | mg/kg<br>0.85<br>1.1<br>0.62<br>Yes<br>No-Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C 0.31 C 0.31 NC 0.047  0.75 (continue) c (acceptable)                       | 11.4<br>11.9<br>11.5<br>Yes (c:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8<br>1.8<br>0.52<br>5<br>ontinue)                    | 3900<br>4500<br>350<br>Yes (c             | JB 700 B 670 U 350 000 continue) (acceptable)  | 5000 Yes (continue No-Stop (accepta                     |
| Area SPA-5 Duplicate of J1R645 Split of J1R645 Analysis:                     | Number J1R645 J1R653 J1R670  TDL  Both > Both > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bith > Bit | Date 4/8/2013 4/8/2013 4/8/2013 PQL? 5xTDL? D > 2 TDL?                         | mg/kg<br>275<br>219<br>279<br>Yes (<br>No-Stop                        | N 50 (continuo (accepta | 54.0<br>53.5<br>99.9<br>ue)<br>otable)                       | mg/kg<br>52.6<br>49.5<br>44.8<br>Yes ( | X 0.086 X 0.085 N 2.7  2.5 (continue) (calc RPD) 6.1% applicable                       | 38.5 X<br>37.8 X<br>37.4 N<br>Yes (cor<br>Yes (cal-<br>1.8<br>Not app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.36<br>0.36<br>1 4.2<br>ntinue)<br>c RPD)<br>%                                 | 5.9<br>6.5<br>5.0<br>Yes (co<br>No-Stop (a | PQL 2.0 2.0 0.21  continue) coeptable          | mg/kg 1.2 1.3 0.60 Ves (c No-Stop (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B 0.32 B 0.32 0.042 0.75 ontinue) acceptable | mg/kg<br>0.85<br>1.1<br>0.62<br>Yes<br>No-Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C 0.31 C 0.31 NC 0.047  0.75 (continue) c (acceptable)                       | 11.4<br>11.9<br>11.5<br>Yes (co<br>No-Stop (co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8 1.8 0.52 5 continue) acceptable                    | 3900<br>4500<br>350<br>Yes (c<br>No-Stop) | JB 700 B 670 U 350  000 continue) (acceptable) | 5000 Yes (continue No-Stop (acceptable) No - acceptable |
| Area SPA-5 Duplicate of J1R645 Split of J1R645 Analysis:                     | Number J1R645 J1R653 J1R670  TDL  Both > Both > Difference Both >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date 4/8/2013 4/8/2013 4/8/2013 PQL? 5xTDL? PD > 2 TDL? PQL?                   | mg/kg<br>275<br>219<br>279<br>Yes (<br>No-Stop<br>No - a<br>Yes (     | N 50 (continuo (accepta | 54.0<br>53.5<br>99.9<br>ue)<br>otable)                       | mg/kg 52.6 49.5 44.8  Yes (  Not Yes)  | X 0.086 X 0.085 N 2.7  2.5 (continue) (calc RPD) 6.1% applicable (continue)            | 38.5 X<br>37.8 X<br>37.4 N<br>Yes (cor<br>Yes (cal-<br>1.8<br>Not app<br>Yes (cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.36<br>0.36<br>1 4.2<br>ntinue)<br>c RPD)<br>%<br>licable<br>ntinue)           | 5.9<br>6.5<br>5.0<br>Yes (co<br>No-Stop (a | PQL 2.0 2.0 0.21  continue) coeptable entinue) | mg/kg 1.2 1.3 0.60 Yes (c No-Stop ( Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes)(c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes)(c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Y | B 0.32 B 0.32 0.042                          | mg/kg 0.85 1.1 0.62  Yes No-Stop No- Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C 0.31 C 0.31 NC 0.047  0.75 (continue) c (acceptable) acceptable (continue) | 11.4<br>11.9<br>11.5<br>Yes (co<br>No-Stop (co<br>No - ac<br>Yes (co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8 1.8 0.52 5 continue) acceptable ceptable continue) | 3900<br>4500<br>350<br>Yes (c<br>No-Stop) | JB 700 B 670 U 350 000 continue) (acceptable)  | 5000 Yes (continue No-Stop (acceptable) No - acceptable |
| Area SPA-5 Duplicate of J1R645 Split of J1R645 Analysis:                     | Number J1R645 J1R653 J1R670  TDL  Both > Both > Both > Both > Both > Both >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date 4/8/2013 4/8/2013 4/8/2013 4/8/2013 PQL? 5xTDL? PD 5 > 2 TDL? PQL? 5xTDL? | mg/kg 275 219 279 Yes ( No-Stop Yes ( Yes ( Yes (                     | N 50 (continuo (accepta | 54.0<br>53.5<br>99.9<br>ue)<br>otable)                       | yes (                                  | X 0.086 X 0.085 N 2.7  2.5 (continue) (calc RPD) 6.1% applicable (continue) (calc RPD) | 38.5 X 37.8 X 37.4 N  1 Yes (correction of the correction of the c | 0.36 0.36 4.2 ntinue) c RPD) % licable ntinue) c RPD)                           | 5.9<br>6.5<br>5.0<br>Yes (co<br>No-Stop (a | PQL 2.0 2.0 0.21  continue) coeptable entinue) | mg/kg 1.2 1.3 0.60 Yes (c No-Stop ( Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes)(c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes)(c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Yes (c Y | B 0.32 B 0.32 0.042 0.75 ontinue) acceptable | mg/kg 0.85 1.1 0.62  Yes No-Stop No- Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C 0.31 C 0.31 NC 0.047  0.75 (continue) c (acceptable)                       | 11.4<br>11.9<br>11.5<br>Yes (co<br>No-Stop (co<br>No - ac<br>Yes (co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8 1.8 0.52 5 continue) acceptable                    | 3900<br>4500<br>350<br>Yes (c<br>No-Stop) | JB 700 B 670 U 350  000 continue) (acceptable) | 5000 Yes (continue No-Stop (acceptable) No - acceptable |
| Area SPA-5 Duplicate of J1R645 Split of J1R645 Analysis:  Duplicate Analysis | Number J1R645 J1R653 J1R670  TDL  Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Both > Bot | Date 4/8/2013 4/8/2013 4/8/2013 PQL? 5xTDL? PD > 2 TDL? PQL?                   | mg/kg 275 219 279 Yes (No-Stop Yes (Yes (Yes (Yes (Yes (Yes (Yes (Yes | N 50 (continuo (accepta | 54.0<br>53.5<br>99.9<br>ue)<br>otable)<br>able<br>ue)<br>PD) | mg/kg 52.6 49.5 44.8  Yes (  Not Yes ( | X 0.086 X 0.085 N 2.7  2.5 (continue) (calc RPD) 6.1% applicable (continue)            | 38.5 X<br>37.8 X<br>37.4 N<br>Yes (cor<br>Yes (cal-<br>1.8<br>Not app<br>Yes (cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.36<br>0.36<br>1 4.2<br>ntinue)<br>c RPD)<br>%<br>licable<br>ntinue)<br>c RPD) | 5.9<br>6.5<br>5.0<br>Yes (co<br>No-Stop (a | PQL 2.0 2.0 0.21  continue) cceptable entinue) | mg/kg 1.2 1.3 0.60  Yes (c No-Stop ( No-Stop (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B 0.32 B 0.32 0.042                          | yes No-Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C 0.31 C 0.31 NC 0.047  0.75 (continue) c (acceptable) acceptable (continue) | 11.4<br>11.9<br>11.5<br>Yes (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop (con No-Stop | 1.8 1.8 0.52 5 continue) acceptable ceptable continue) | 3900<br>4500<br>350<br>Yes (c<br>No-Stop  | JB 700 B 670 U 350  000 continue) (acceptable) | 5000 Yes (continue No-Stop (acceptable) No - acceptable |

Attachment to Waste Site Reclassification Forms 2013-077, 2013-078, and 2013-079

Attachment 1. 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Verification Sample Results (Metals).

|                     |        | Attachn     |       |                |      |               |          |       |       | Arsenie      | Results (Met | I      | Barium   | 1     | В     | rylliur | n     |
|---------------------|--------|-------------|-------|----------------|------|---------------|----------|-------|-------|--------------|--------------|--------|----------|-------|-------|---------|-------|
| Sample Area         | HEIS . | Sample Date |       | uninu          |      |               | ntimor   | POL   | mg/kg | 0            | POL          | mg/kg  | O        | POL   | mg/kg | Q       | PQL   |
| Sample Area         | Number | 1 -         | mg/kg | Q              | PQL  | mg/kg<br>0.40 | BJ       | 0.37  | 3.6   | <u> </u>     | 0.64         | 61.3   | ~        | 0.074 | 0.27  |         | 0.032 |
| EXC-3               | J1PW83 | 9/18/2012   | 7070  | X              | 1.5  | 0.40          | UJ       | 0.35  | 3.5   |              | 0.61         | 63.3   |          | 0.071 | 0.26  |         | 0.031 |
| Duplicate of J1PW83 | J1PW93 | 9/18/2012   | 7140  | X              | 1.4  |               | UJ       | 0.36  | 3.6   |              | 0.62         | 65.4   |          | 0.071 | 0.34  | 1       | 0.031 |
| EXC-1               | J1PW81 | 9/18/2012   | 8090  | Х              | 1.4  | 0.36          | UJ<br>UJ | 0.34  | 2.2   |              | 0.58         | 73.0   |          | 0.067 | 0.27  |         | 0.029 |
| EXC-2               | J1PW82 | 9/18/2012   | 6360  | X              | 1.4  | 0.34          | U        | 0.36  | 1.2   |              | 0.62         | 46.8   | X        | 0.072 | 0.53  | В       | 0.16  |
| EXC-4               | J1RJ77 | 3/15/2013   | 4040  | Х              | 1.5  | 0.36          | UJ       | 0.33  | 3.1   |              | 0.57         | 68.3   |          | 0.065 | 0.34  | В       | 0.14  |
| EXC-5               | JIPW85 | 9/18/2012   | 6150  | X              | 1.3  |               | UJ       | 0.34  | 2.6   |              | 0.59         | 73.7   | 1        | 0.068 | 0.33  | В       | 0.15  |
| EXC-6               | J1PW86 | 9/18/2012   | 6250  | X              | 1.4  | 0.34          | UJ       | 0.34  | 2.3   |              | 0.55         | 60.4   |          | 0.064 | 0.32  | В       | 0.14  |
| EXC-7               | J1PW87 | 9/18/2012   | 5610  | X              | 1.3  | 0.32          | UJ       | 0.34  | 1.9   |              | 0.59         | 42.1   |          | 0.068 | 0.33  | В       | 0.15  |
| EXC-8               | J1PW88 | 9/18/2012   | 5000  | Х              | 1.4  | 0.34          |          |       | 2.3   |              | 0.62         | 55.2   |          | 0.071 | 0.35  | В       | 0.15  |
| EXC-9               | J1PW89 | 9/18/2012   | 5960  | X              | 1.4  | 0.36          | UJ       | 0.36  | 2.5   | -            | 0.63         | 56.7   | †        | 0.072 | 0.37  | В       | 0.16  |
| EXC-10              | J1PW90 | 9/18/2012   | 6410  | X              | 1.5  | 0.36          | UJ       | 0.36  | 1.9   |              | 0.66         | 53.3   | 1        | 0.076 | 0.32  | В       | 0.16  |
| EXC-11              | JIPW91 | 9/18/2012   | 4880  | X              | 1.5  | 0.38          | UJ       | 0.38  | 2.2   |              | 0.57         | 62.8   |          | 0.065 | 0.26  |         | 0.028 |
| EXC-12              | JIPW92 | 9/18/2012   | 6320  | X              | 1.3  | 0.33          | UJ       | 0.529 | 3.03  |              | 0.882        | 54.0   |          | 0.441 | 0.215 |         | 0.176 |
| Split of J1PW83     | JIPWF8 | 9/18/2012   | 6010  | <b></b>        | 4.41 | 0.529         | U        | 0.329 | 2.4   |              | 0.60         | 52.2   | X        | 0.070 | 0.21  | 1       | 0.030 |
| SPA-5               | J1R645 | 4/8/2013    | 5150  | X              | 1.4  | 0.35          | U        | 0.33  | 2.3   |              | 0.60         | 43.9   | X        | 0.069 | 0.21  |         | 0.030 |
| Duplicate of J1R645 | J1R653 | 4/8/2013    | 4690  | X              | 1,4  | 0.34          | U        | 0.34  | 2.5   |              | 0.58         | 52.0   | X        | 0.067 | 0.23  | 1-      | 0.029 |
| SPA-1               | J1R641 | 4/8/2013    | 5780  | X              | 1.4  | 0.34          |          | 0.34  | 2.7   | <b></b>      | 0.58         | 63.0   | X        | 0.070 | 0.23  | 1       | 0.031 |
| SPA-2               | J1R642 | 4/8/2013    | 5790  | X              | 1.4  | 0.35          | U        | 0.33  | 2.4   |              | 0.60         | 53.0   | X        | 0.069 | 0.24  | T       | 0.030 |
| SPA-3               | J1R643 | 4/8/2013    | 5520  | X              | 1.4  | 0.34          | U        | 0.34  | 1.6   |              | 0.68         | 43.5   | X        | 0.078 | 0.16  | В       | 0.034 |
| SPA-4               | J1R644 | 4/8/2013    | 4230  | X              | 1.6  | 0.39          | U        | 0.39  | 2.3   | <del> </del> | 0.68         | 58.1   | X        | 0.078 | 0.22  |         | 0.034 |
| SPA-6               | J1R646 | 4/8/2013    | 5390  | X              | 1.6  | 0.39          |          | 0.39  | 2.0   |              | 0.63         | 44,4   | X        | 0.073 | 0.20  | T       | 0.032 |
| SPA-7               | J1R647 | 4/8/2013    | 4450  | X              | 1.5  | 0.36          | U<br>B   | 0.34  | 2.0   |              | 0.60         | 59.6   |          | 0.069 | 0.030 | U       | 0.030 |
| SPA-8               | J1RKM8 | 4/29/2013   | 6270  | ļ              | 1.4  | 0.51          | -В       | 0.34  | 2.4   | <del></del>  | 0.60         | 53.8   | 1        | 0.069 | 0.030 | В       | 0.030 |
| SPA-9               | JIRKM9 | 4/29/2013   | 5870  |                | 1.4  | 0.54          | +        | 0.34  | 2.7   | <del></del>  | 0.65         | 53.5   | $\vdash$ | 0.075 | 0.057 | В       | 0.033 |
| SPA-10              | JIRKM6 | 4/29/2013   | 5960  |                | 1.5  | 0.57          | B        | 0.36  | 2.6   | <del></del>  | 0.63         | 60.2   |          | 0.073 | 0.068 | В       | 0.032 |
| SPA-11              | JIRKM7 | 4/29/2013   | 6190  |                | 1.5  | 0.53          | В        | 0.36  | 2.2   | +            | 0.63         | 58.7   | -        | 0.072 | 0.031 | U       | 0.031 |
| SPA-12              | J1RKM5 | 4/29/2013   | 6020  |                | 1.5  | 0.87          |          | 1.4   | 2.6   |              | 0.67         | 51.4   | N        | 0.53  | 0.36  | В       | 0.36  |
| Split of J1R645     | J1R670 | 4/8/2013-   | 4880  | +              | 29.7 | 2.3           | N<br>U.  | 0.34  | 0.87  | В            | 0.60         | 62.9   | X        | 0.069 | 0.51  | В       | 0.15  |
| FS-1                | J1RJ78 | 3/15/2013   | 3640  | X              | 1.4  | 0.34          | υ.       | 0.34  | 2.3   | Ь.           | 0.61         | 61.7   |          | 0.070 | 0.15  | В       | 0.15  |
| FS-2                | J1PWC9 | 9/18/2012   | 5610  | <del> </del> - | 1.4  | 0.35          |          | 0.36  | 2.1   | ļ            | 0.62         | 55.1   |          | 0.071 | 0.15  | U       | 0.15  |
| FS-3                | J1PWD0 | 9/18/2012   | 5380  |                | 1.5  | 0.36          | U        |       | 2.3   | <del></del>  | 0.65         | 63.5   |          | 0.074 | 0.17  | В       | 0.16  |
| FS-4                | JIPWDI | 9/18/2012   | 6220  | .—             | 1.5  | 0.37          | U        | 0.37  | 1.8   |              | 0.64         | 49.8   | +        | 0.073 | 0.16  | U       | 0.16  |
| FS-5                | J1PWD2 | 9/18/2012   | 4390  |                | 1.5  | 0.37          | U        | 0.37  | 2.3   | +            | 0.60         | 56.7   | +        | 0.069 | 0.15  | U       | 0.15  |
| FS-6                | J1PWD3 | 9/18/2012   | 4520  |                | 1.4  | 0.35          | U        |       | 2.5   | +            | 0.63         | 65.9   | 1 x      | 0.073 | 0.18  | В       | 0.032 |
| FS-5 (100-D-77)     | J1R160 | 9/4/2012    | 7150  | X              | 1.5  | 0.71          | +        | 0.37  | 1.5   | М            | 0.63         | 47.7   | + ^      | 0.073 | 0.032 | U       | 0.032 |
| FS D-83:1-1         | J1RN38 | 5/29/2013   | 3960  |                | 1.5  | 1.1           | M        | 0.36  | 1.5   | IVI          | 0.63         | 49.2   |          | 0.071 | 0.031 | Ū       | 0.031 |
| FS D-83:1-2         | J1RN39 | 5/29/2013   | 3790  | _              | 1.4  | 0.77          | +-       | 0.35  |       | +-           | 0.60         | 57.4   | +        | 0.071 | 0.030 | U       | 0.030 |
|                     |        | £10012012   | 5420  | 1              | 1.4  | 0.59          | 1        | 0.35  | 2.1   | 1            | 1 0.00       | J J1.4 |          |       |       |         |       |
| FS D-83:1-3         | JIRN40 | 5/29/2013   | 185   | +x             | 1.6  | 0.38          | υ        | 0.38  | 0.66  | U            | 0.66         | 1.8    | X        | 0.076 | 0.047 | B       | 0.033 |

Acronyms and notes apply to all of the tables in this attachment.

M = sample duplicate precision not met.

N= recovery exceeds upper or lower control limits

P = aroclor flag, greater than 25% difference for detected concentrations between the two GC columns.

PAH = polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

PEST = pesticide

PQL = practical quantitation limit

Q = qualifier

RAG = remedial action goal

R = rejected

RSVP = remaining site verification package

SPA = staging pile area

SVOA = semivolatile organic analysis

TPH = total petroleum hydrocarbons

U = undetected

X (metals) = serial dilution in the analytical batch indicates that physical and chemical interferences are present.

X (organics) = More than 40% difference between columns, lower result reported.

Y = additional qualifiers used as required are explained in the case narrative.

| Attachment | 1               | Sheet No. | 1 of 31  |
|------------|-----------------|-----------|----------|
| Originator | N. K. Schiffern | Date _    | 07/08/13 |
| Checked    | J. D. Skoglie   | Date      | 07/08/13 |
| Calc. No.  | 0100D-CA-V0508  | Rev. No.  | 0        |

<sup>&</sup>lt;sup>a</sup> Benzo(a)pyrene results from sample location EXC-3 are provided for informational purposes only.

<sup>&</sup>lt;sup>b</sup> Sample results from HEIS numbers J1PW84, J1R648, J1R650, J1R651, and J1PWC8 are provided for informational purposes only.

Note: Data qualified with B, C, D J, M, N, P and/or X are considered acceptable values.

B = Estimated result. Result is less than the RL, but greater than the MDL.

C = detected in both the sample and the associated QC blank, sample concentration was </ >

D = obtained from dilution.

EXC = excavation

FS = focused sample

HEIS = Hanford Environmental Information System

J = estimate

Sample Area

EXC-3

Duplicate of J1PW83

EXC-1

EXC-2

EXC-4

EXC-5

EXC-6

EXC-7

EXC-8

EXC-9

EXC-10

EXC-11

EXC-12

Split of J1PW83

SPA-5

Duplicate of J1R645

SPA-1

SPA-2

SPA-3

SPA-4

SPA-6

SPA-7

SPA-8

SPA-9

SPA-10

SPA-11

SPA-12

Split of J1R645

FS-1

FS-2

FS-3

FS-4

FS-5

FS-6

FS-5 (100-D-77)

FS D-83:1-1

FS D-83:1-2

JIRKM7

J1RKM5

J1R670

JIRJ78

J1PWC9

JIPWD0

JIPWD1

J1PWD2

JIPWD3

J1R160

JIRN38

JIRN39

4/29/2013

4/29/2013

4/8/2013

3/15/2013

9/18/2012

9/18/2012

9/18/2012

9/18/2012

9/18/2012

9/4/2012

5/29/2013

5/29/2013

0.94

0.93

3.2

0.89

0.90

0.92

0.96

0.94

0.90

1.7

0.94

0.91

0.94

0.93

3.2

0.89

0.90

0.92

0.96

0.94

0.90

0.94

0.94

0.91

0.90

0.98

U

U

Ū

U

U

U

U

В

UN

U

0.15

0.15

0.21

0.037

0.18

0.17

0.17

0.17

0.17

0.048

0.092

0.13

0.13

0.041

В

В

U

Ū

В

В

В

В

В

В

В

В

U

0.039

0.039

0.21

0.037

0.038

0.038

0.040

0.039

0.037

0.039

0.039

0.038

0.038

0.041

Attachment to Waste Site Reclassification Forms 2013-077, 2013-078, and 2013-079

|        | Attach      | ment 1. 100 | -D-77, | 100-D-62, a | and 100-D-8 | 3:1 W | aste Sites V | Verification | Samole              | Results (Me | etale).    |                     |       |        |       |       |  |
|--------|-------------|-------------|--------|-------------|-------------|-------|--------------|--------------|---------------------|-------------|------------|---------------------|-------|--------|-------|-------|--|
| HEIS   | Sample Date | 1           | Boron  |             |             | admin |              |              | Calciu              |             |            | hromit              | ım    | Cobalt |       |       |  |
| Number | Sample Date | mg/kg       | Q      | PQL         | mg/kg       | 10    | PQL          | mg/kg        | 0                   | POL         | mg/kg      | 0                   | POL   | mg/kg  | O     | POL   |  |
| J1PW83 | 9/18/2012   | 0.96        | U      | 0.96        | 0.040       | Ü     | 0.040        | 9060         | X                   | 13.8        | 13.0       | X                   | 0.057 | 6.1    | X     | 0.098 |  |
| J1PW93 | 9/18/2012   | 0.91        | U      | 0.91        | 0.038       | U     | 0.038        | 8710         | X                   | 13.1        | 13.4       | $\frac{\Lambda}{X}$ | 0.054 | 6.1    | X     | 0.098 |  |
| J1PW81 | 9/18/2012   | 1.3         | В      | 0.92        | 0.062       | В     | 0.038        | 8100         | X                   | 13.2        | 11.1       | + <del>^</del> -    | 0.054 | 7.9    | X     | 0.093 |  |
| J1PW82 | 9/18/2012   | 0.92        | В      | 0.87        | 0.036       | U     | 0.036        | 8800         | X                   | 12.5        | 8.3        | X                   | 0.054 | 7.8    | X     |       |  |
| JIRJ77 | 3/15/2013   | 0.93        | U      | 0.93        | 0.039       | U     | 0.039        | 5850         | X                   | 13.3        | 4.8        | <del>  ^</del> -    | 0.055 | 10.8   |       | 0.088 |  |
| JIPW85 | 9/18/2012   | 0.84        | U      | 0.84        | 0.035       | Ū     | 0.035        | 9990         | $\frac{x}{x}$       | 12.1        | 8.2        | X                   | 0.050 | 9.6    |       | 0.47  |  |
| JIPW86 | 9/18/2012   | 0.87        | U      | 0.87        | 0.037       | Ū     | 0.037        | 6750         | X                   | 12.6        | 8.5        | X                   | 0.052 | 9.5    | X     | 0.43  |  |
| JIPW87 | 9/18/2012   | 0.82        | Ū      | 0.82        | 0.034       | Ü     | 0.034        | 6200         | X                   | 11.9        | 7.1        | X                   | 0.032 |        | X     | 0.45  |  |
| JIPW88 | 9/18/2012   | 0.88        | U      | 0.88        | 0.037       | U     | 0.037        | 5830         | X                   | 12.7        | 5,3        | X                   | 0.049 | 9.7    | X     | 0.42  |  |
| J1PW89 | 9/18/2012   | 0.92        | U      | 0.92        | 0.038       | Ū     | 0.038        | 6320         | X                   | 13.2        | 6.9        | X                   |       | 10.8   | X     | 0.45  |  |
| JIPW90 | 9/18/2012   | 0.93        | U      | 0.93        | 0.039       | Ü     | 0.039        | 6210         | X                   | 13.4        | 6.2        | X                   | 0.054 | 10.3   | X     | 0.47  |  |
| J1PW91 | 9/18/2012   | 0.98        | Ü      | 0.98        | 0.041       | U     | 0.041        | 6670         | $\frac{\Lambda}{X}$ | 14.1        | 5.9        |                     | 0.055 | 10.8   | X     | 0.48  |  |
| JIPW92 | 9/18/2012   | 0.84        | U      | 0.84        | 0.035       | U     | 0.035        | 10200        | X                   | 12.1        | 6.8        | X                   | 0.058 | 10.6   | X     | 0.50  |  |
| JIPWF8 | 9/18/2012   | 0.967       | В      | 1.76        | 0.0877      | В     | 0.176        | 7790         | ^                   | 88.2        | 10.8       | -                   | 0.050 | 6.9    | X     | 0.086 |  |
| J1R645 | 4/8/2013    | 0.90        | U      | 0.90        | 0.047       | В     | 0.037        | 6290         | -x-                 | 12.9        | 5.8        | -                   | 0.176 | 4.91   |       | 1.76  |  |
| J1R653 | 4/8/2013    | 0.89        | ·U     | 0.89        | 0.043       | В     | 0.037        | 5750         | X                   | 12.8        | 6.0        | X                   | 0.053 | 7.6    | X     | 0.091 |  |
| J1R641 | 4/8/2013    | 0.92        | BN     | 0.87        | 0.070       | В     | 0.036        | 6710         | x                   | 12.5        | 7.9        | XM                  | 0.053 | 7.1    | X     | 0.091 |  |
| J1R642 | 4/8/2013    | 1.2         | В      | 0.91        | 0.074       | В     | 0.038        | 8130         | X                   | 13.0        | 7.8        | -                   | 0.051 | 7.7    | X     | 0.088 |  |
| J1R643 | 4/8/2013    | 0.89        | Ū      | 0.89        | 0.042       | В     | 0.037        | 7250         | $\frac{\lambda}{X}$ | 12.8        | 7.8        | X                   | 0.054 | 7.4    | X     | 0.093 |  |
| J1R644 | 4/8/2013    | 1.0         | Ü      | 1.0         | 0.044       | В     | 0.042        | 5150         | X                   | 14.5        |            | X                   | 0.053 | 7.7    | X     | 0.091 |  |
| J1R646 | 4/8/2013    | 1.0         | Ū      | 1.0         | 0.067       | В     | 0.042        | 5960         | $\hat{\mathbf{x}}$  | 14.4        | 4.6<br>6.9 | X                   | 0.060 | 7.9    | X     | 0.10  |  |
| J1R647 | 4/8/2013    | 0.94        | Ū      | 0.94        | 0.049       | В     | 0.039        | 5650         | X                   | 13.5        | 6.5        | X                   | 0.059 | 7.4    | X     | 0.10  |  |
| JIRKM8 | 4/29/2013   | 0.89        | Ü      | 0.89        | 0.15        | B     | 0.037        | 6250         | X                   | 12.8        | 7.8        | X                   | 0.056 | 7.7    | X     | 0.096 |  |
| JIRKM9 | 4/29/2013   | 0.89        | Ü      | 0.89        | 0.16        | B     | 0.037        | 7180         | x                   | 12.8        | 7.4        |                     | 0.053 | 7.3    | X     | 0.091 |  |
| JIRKM6 | 4/29/2013   | 0.97        | Ü      | 0.97        | 0.14        | В     | 0.040        | 8980         | X                   | 13.9        | 7.7        | -                   | 0.053 | 7.5    | X     | 0.091 |  |
|        |             |             | -      |             |             |       | 0.040        | 0,00         | /                   | 12.7        | 1.1        | 1 1                 | UUD/  | /6     | ' x l | n nga |  |

6690

7280

6290

5550

8050

6520

5730

5710

8600

22500

5320

5130

6830

Χ

Х

X

х

Х

X

X

М

13.9

13.5

13.4

28.2

12.8

13.0

13.2

13.8

13.6

12.9

13.6

13.5

13.1

12.9

7.7

9.4

7.8

6.3

3.7

7.4

6.9

6.7

5.8

4.7

7.1

3.3

3.8

7.3

|           |      |              |   | 0.000 | 0.1       |    | 0,024  |   |
|-----------|------|--------------|---|-------|-----------|----|--------|---|
| 40.7 BCX  | 14.1 | 0.33         | X | 0.058 | 0.10      | UX | 0.10   | _ |
| Attachmen |      | 1            |   |       | Sheet No. | 2  | of 31  | _ |
| Originato | rN   | K. Schiffern |   |       | Date      | 07 | /08/13 | _ |
| Checked   | i    | D. Skoglie   |   |       | Date      | 07 | /08/13 | _ |
| Calc. No. | 0100 | D-CA-V0508   |   |       | Rev. No.  |    | 0      | _ |

Х

X

X

0.057

0.056

0.055

0.65

0.053

0.053

0.054

0.057

0.056

0.053

0.056

0.055

0.054

0.053

7.6

6.4

7.2

8.2

10.6

10.0

9.9

11.6

8.0

11.4

8.1

8.5

10.5

8.4

X

X

X

В

X

X

Х

X

X

X

0.099

0.096

0.095

2.0

0.45

0.46

0.47

0.49

0.48

0.46

0.096

0.096

0.093

0.092

FS D-83:1-3 JIRN40 5/29/2013 0.90 U Equipment Blank J1R654 4/8/2013 0.98 U

Attachment to Waste Site Reclassification Forms 2013-077, 2013-078, and 2013-079

|                                |                | Attachin    | ent 1. 100- |        |       | Hexaval | ant Ch     | romium                                |       | Iron |      |       | Lead |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ithiun    |                     |
|--------------------------------|----------------|-------------|-------------|--------|-------|---------|------------|---------------------------------------|-------|------|------|-------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|
| Sample Area                    | HEIS<br>Number | Sample Date | mg/kg       | Copper | PQL   | mg/kg   | Q          | PQL                                   | mg/kg | Q    | PQL  | mg/kg | Q    | PQL   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q         | PQI                 |
| 7002                           | JIPW83         | 9/18/2012   | 14.1        | 1 4    | 0.21  | 0.155   | UJ         | 0.155                                 | 17600 | X    | 3.7  | 3.9   | X    | 0.26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                     |
| EXC-3                          | JIPW93         | 9/18/2012   | 14.0        | +      | 0.20  | 0.155   | UJ         | 0.155                                 | 17700 | X    | 3.5  | 4.0   | X    | 0.25  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | is<br>to the second |
| Duplicate of J1PW83            | J1PW81         | 9/18/2012   | 17.9        | -      | 0.20  | 0.155   | UJ         | 0.155                                 | 22900 | X    | 3.6  | 18.5  | X    | 0.25  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                     |
| EXC-I                          | J1PW82         | 9/18/2012   | 15.5        |        | 0.19  | 0.155   | UJ         | 0.155                                 | 23200 | X    | 3.4  | 7.4   | X    | 0.24  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 10.72               |
| EXC-2                          | JIRJ77         | 3/15/2013   | 14.0        | 1      | 1.0   | 0.155   | U          | 0.155                                 | 25200 | X    | 3.6  | 2.2   | В    | 1.3   | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | -                   |
| EXC-4                          | JIPW85         | 9/18/2012   | 16.3        |        | 0.93  | 0.155   | UJ         | 0.155                                 | 24100 | X    | 3.3  | 9.1   | X    | 1.2   | A service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the serv | , 150 Ed. | no ligaritation     |
| EXC-5                          |                | 9/18/2012   | 14.5        | 1-1    | 0.97  | 0.155   | UJ         | 0.155                                 | 23800 | X    | 3.4  | 4.1   | X    | 1.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 15                  |
| EXC-6                          | J1PW86         | 9/18/2012   | 15.7        |        | 0.91  | 0.155   | UJ         | 0.155                                 | 23900 | X    | 3.2  | 3.3   | X    | 1.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                     |
| EXC-7                          | J1PW87         | 9/18/2012   | 15.2        |        | 0.97  | 0.155   | UJ         | 0.155                                 | 27100 | X    | 3.4  | 3.3   | X    | 1.2   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (3.9)   | 550                 |
| EXC-8                          | J1PW88         |             | 16.2        | -      | 1.0   | 0.155   | UJ         | 0.155                                 | 24700 | X    | 3.6  | 4.6   | X    | 1.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | MANAGE PARK TO      |
| EXC-9                          | J1PW89         | 9/18/2012   | 16.2        | -      | 1.0   | 0.155   | UJ         | 0.155                                 | 25300 | X    | 3.6  | 4.6   | X    | 1.3   | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1         |                     |
| EXC-10                         | J1PW90         | 9/18/2012   |             | -      | 1.1   | 0.155   | UJ         | 0.155                                 | 26500 | X    | 3.8  | 3.8   | X    | 1.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                     |
| EXC-11                         | J1PW91         | 9/18/2012   | 14.9        | -      | 0.19  | 0.155   | UJ         | 0.155                                 | 21800 | X    | 3.3  | 3.9   | X    | 0.23  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | (8.6                |
| EXC-12                         | J1PW92         | 9/18/2012   | 16.2        |        | 0.19  | 0.133   | U          | 0.20                                  | 14500 |      | 17.6 | 3.31  |      | 0.441 | (40000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 9594                |
| Split of JIPW83                | J1PWF8         | 9/18/2012   | 11.9        | 37     | 0.882 | 0.205   | U          | 0.155                                 | 20500 | X    | 3.5  | 3.5   |      | 0.25  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                     |
| SPA-5                          | J1R645         | 4/8/2013    | 14.6        | X      |       | 0.203   | -          | 0.155                                 | 20100 | X    | 3.4  | 5.4   |      | 0.24  | Sevial resi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123/23    |                     |
| Duplicate of J1R645            | J1R653         | 4/8/2013    | 14.0        | X      | 0.20  | 0.228   | -          | 0.155                                 | 21100 | X    | 3.4  | 3.6   |      | 0.24  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 137       | grati               |
| SPA-1                          | J1R641         | 4/8/2013    | 16.0        | X      |       |         | -          | 0.155                                 | 20700 | X    | 3.5  | 5.6   |      | 0.25  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 2000                |
| SPA-2                          | J1R642         | 4/8/2013    | 16.4        | X      | 0.20  | 0.303   | -          | 0.155                                 | 21700 | X    | 3.4  | 4.4   |      | 0.24  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | Sabal .             |
| SPA-3                          | J1R643         | 4/8/2013    | 16.2        | X      | 0.20  | 0.522   | -          | 0.155                                 | 21400 | X    | 3.9  | 2.0   |      | 0.28  | 語語的問題                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                     |
| SPA-4                          | J1R644         | 4/8/2013    | 13.6        | X      | 0.22  | 0.165   | -          | 0.155                                 | 21300 | X    | 3.9  | 7.1   | -    | 0.28  | Z/HI HANV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                     |
| SPA-6                          | J1R646         | 4/8/2013    | 15.5        | X      | 0.22  | 0.633   | -          | 0.155                                 | 20200 | X    | 3.6  | 2.6   |      | 0.26  | 12237 6 3 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 100 E               |
| SPA-7                          | J1R647         | 4/8/2013    | 13.5        | X      | 0.21  | 0.185   | **         |                                       | 20100 | X    | 3.4  | 4.0   | -    | 0.24  | 4 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 195       | 1513                |
| SPA-8                          | J1RKM8         | 4/29/2013   | 13.1        |        | 0.20  | 0.155   | U          | 0.155                                 | 19800 | X    | 3.4  | 4.3   |      | 0.24  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-        | 1000                |
| SPA-9                          | JIRKM9         | 4/29/2013   | 14.6        |        | 0.20  | 0.155   | U          | 0.155                                 |       | X    | 3.7  | 3.9   | -    | 0.27  | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 1         |                     |
| SPA-10                         | JIRKM6         | 4/29/2013   | 14.3        |        | 0.21  | 0.155   | U          | 0.155                                 | 20200 |      | 3.6  | 3.5   | -    | 0.26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21        | -                   |
| SPA-11                         | J1RKM7         | 4/29/2013   | 14.2        |        | 0.21  | 0.155   | U          | 0.155                                 | 17500 | X    |      | 3.4   | -    | 0.26  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.01      | 1.00                |
| SPA-12                         | J1RKM5         | 4/29/2013   | 13.8        |        | 0.21  | 0.155   | U          | 0.155                                 | 19800 | X    | 3.6  | 4.5   | -    | 0.26  | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В         | 100000              |
| Split of J1R645                | J1R670         | 4/8/2013    | 13.2        |        | 1.5   | 0.16    | В          | 0.10                                  | 18400 |      | 6.3  | 2.4   | -    | 1.2   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N SEE     | 100                 |
| FS-1                           | JIRJ78         | 3/15/2013   | 13.8        |        | 0.98  | 0.155   | U          | 0.155                                 | 24100 | X    | 3.4  |       |      | 1.2   | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 (0)     |                     |
| FS-2                           | J1PWC9         | 9/18/2012   | 16.4        |        | 1.0   | 0.155   | U          | 0.155                                 | 24400 | X    | 3.5  | 3.9   | -    | 1.3   | 177 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                     |
| FS-3                           | JIPWD0         | 9/18/2012   | 15.7        |        | 1.0   | 0.155   | U          | 0.155                                 | 24500 | X    | 3.6  | 3.3   |      |       | - House year of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                     |
| FS-4                           | J1PWD1         | 9/18/2012   | 17.4        |        | 1.1   | 0.155   | U          | 0.155                                 | 27600 | X    | 3.7  | 3.2   | **   | 1.3   | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                     |
| FS-5                           | J1PWD2         | 9/18/2012   | 16.5        |        | 1.0   | 0.259   |            | 0.155                                 | 31200 | X    | 3.7  | 2.2   | В    | 1.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16        | 1000                |
| FS-6                           | JIPWD3         | 9/18/2012   | 18.1        |        | 0.99  | 0.155   | U          | 0.155                                 | 25800 | X    | 3.5  | 3.9   |      | 1.2   | Walter of the Sand of the Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                     |
| FS-5 (100-D-77)                | J1R160         | 9/4/2012    | 19.4        | X      | 0.21  | 0.243   |            | 0.155                                 | 20900 | X    | 3.7  | 7.8   |      | 0.26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 22,7                |
|                                | JIRN38         | 5/29/2013   | 12.7        | M      | 0.21  | 0.165   |            | 0.155                                 | 21100 |      | 3.6  | 2.2   |      | 0.26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -                   |
| FS D-83:1-1                    | J1RN39         | 5/29/2013   | 13.2        | 0.00   | 0.20  | 0.155   | U          | 0.155                                 | 23800 |      | 3.5  | 1.8   |      | 0.25  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 1 mayor             |
| FS D-83:1-2                    | J1RN40         | 5/29/2013   | 11.5        |        | 0.20  | 0.155   | U          | 0.155                                 | 20700 |      | 3.5  | 2.6   |      | 0.25  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | 1                   |
| FS D-83:1-3<br>Equipment Blank | J1R654         | 4/8/2013    | 0.39        | BX     | 0.22  | A STATE | 11 50 7 68 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 518   | X    | 3.8  | 0.48  | B    | 0.27  | Sheet No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S. A.     | 3 of 3              |

| Date | 07/08/13 |
| Date | 07/08/13 |
| Date | 07/08/13 |
| Rev. No. | 0

Attachment to Waste Site Reclassification Forms 2013-077, 2013-078, and 2013-079

|                                |                  | Attachn     | nent 1. 100- | D-77, <u>1</u> | 00-D-62, a | nd 100-D-8 | 3:1 Wa     | iste Sites V | erification S | sample   | Results (Mct | als).         |         |             |          | Nickel              |         |
|--------------------------------|------------------|-------------|--------------|----------------|------------|------------|------------|--------------|---------------|----------|--------------|---------------|---------|-------------|----------|---------------------|---------|
|                                | HEIS             | T           | Ma           | gnesiu         | m          | M          | angane     |              |               | Mercur   |              |               | lybdeni |             | mg/kg    | O                   | PQL     |
| Sample Area                    | Number           | Sample Date | mg/kg        | Q              | PQL        | mg/kg      | Q          | PQL          | mg/kg         | Q        | PQL          | mg/kg<br>0.25 | Q       | PQL<br>0.25 | 12.5     | X                   | 0.12    |
| EXC-3                          | J1PW83           | 9/18/2012   | 4920         | X              | 3.6        | 289        | X          | 0.098        | .0.0074       | В        | 0.0051       | 0.23          | U       | 0.24        | 12.7     | X                   | 0.11    |
| Duplicate of J1PW83            | J1PW93           | 9/18/2012   | 4860         | X              | 3.4        | 286        | X          | 0.093        | 0.0068        | В        | 0.0052       | 0.60          | В       | 0.24        | 13.1     | $\frac{x}{x}$       | 0.12    |
| EXC-1                          | J1PW81           | 9/18/2012   | 5040         | X              | 3.5        | 330        | X          | 0.094        | 0.14          | ļ        | 0.0056       | 0.54          | В       | 0.23        | 11.9     | X                   | 0.11    |
| EXC-2                          | J1PW82           | 9/18/2012   | 4600         | X              | 3.3        | 305        | X          | 0.088        | 0.075         |          | 0.0057       | 0.34          | B       | 0.25        | 10.0     |                     | 0.12    |
| EXC-4                          | JIRJ77           | 3/15/2013   | 4890         | X              | 3.5        | 323        |            | 0.095        | 0.013         | В        | 0.0056       | 0.38          | B       | 0.23        | 12.2     | X                   | 0.11    |
| EXC-5                          | J1PW85           | 9/18/2012   | 5130         | X              | 15.9       | 321        | X          | 0.086        | 0.092         |          | 0.0060       | 0.48          | В       | 0.23        | 14.7     | X                   | 0.11    |
| EXC-6                          | JIPW86           | 9/18/2012   | 5660         | X              | 16.5       | 320        | X          | 0.089        | 0.022         |          | 0.0051       | 0.31          | В       | 0.23        | 12.5     | $\frac{x}{x}$       | 0.10    |
| EXC-7                          | J1PW87           | 9/18/2012   | 5200         | X              | 15.5       | 305        | X          | 0.084        | 0.0055        | В        | 0.0050       | 0.29          | B       | 0.22        | 11.0     | X                   | 0.11    |
| EXC-8                          | JIPW88           | 9/18/2012   | 5400         | X              | 16.6       | 324        | X          | 0.090        | 0.0062        | В        | 0.0057       |               | В       | 0.24        | 12.1     | X                   | 0.11    |
| EXC-9                          | JIPW89           | 9/18/2012   | 5480         | X              | 17.3       | 318        | X          | 0.093        | 0.027         |          | 0.0060       | 0.26          | В       | 0.24        | 14.5     | X                   | 0.12    |
| EXC-10                         | J1PW90           | 9/18/2012   | 5760         | X              | 17.6       | 388        | X          | 0.095        | 0.0089        | В        | 0.0058       |               |         | 0.25        | 13.5     | X                   | 0.12    |
| EXC-11                         | JIPW91           | 9/18/2012   | 5450         | X              | 18.5       | 322        | X          | 0.10         | 0.0064        | U        | 0.0064       | 0.31          | B       | 0.26        | 10.3     | $\frac{\Lambda}{X}$ | 0.12    |
| EXC-12                         | J1PW92           | 9/18/2012   | 4080         | X              | 3.2        | 271        | X          | 0.086        | 0.020         |          | 0.0055       | 0.28          | В       | 1.76        | 9.49     | +^-                 | 3.53    |
| Split of J1PW83                | J1PWF8           | 9/18/2012   | 4000         |                | 66.2       | 242        | ļ <u> </u> | 4.41         | 0.0266        | U        | 0.0266       | 0.357         | В       | 0.24        | 9.49     | X                   | 0.11    |
| SPA-5                          | J1R645           | 4/8/2013    | 4030         | X              | 3.4        | 260        | X          | 0.091        | 0.0096        | В        | 0.0058       | 0.24          | U       | 0.24        | 7.3      | x                   | 0.11    |
| Duplicate of J1R645            | J1R653           | 4/8/2013    | 3790         | X              | 3.4        | 254_       | X          | 1 0.09       | 0.0088        | B_       | 0.0060       | 0.24          | U       |             | 9.5      | XM                  | 0.11    |
| SPA-1                          | J1R641           | 4/8/2013    | 4300         | X              | 3.3        | 295        | X          | 0.088        | 0.011         | ВМ       | 0.0054       | 0.24          | В       | 0.23        | 8.8      | X                   | 0.11    |
| SPA-2                          | J1R642           | 4/8/2013    | 4000         | X              | 3.4        | 280        | X          | 0.093        | 0.043         |          | 0.0063       | 0.35          | В       |             | 8.2      | $\frac{\lambda}{x}$ | 0.11    |
| SPA-3                          | J1R643           | 4/8/2013    | 4020         | X              | 3.4        | 284        | X          | 0.091        | 0.036         |          | 0.0064       | 0.46          | В       | 0.24        | 7.1      | $\frac{\hat{x}}{x}$ | 0.11    |
| SPA-4                          | J1R644           | 4/8/2013    | 3710         | X              | 3.8        | 264        | X          | 0.10         | 0.0056        | U        | 0.0056       | 0.27          | U       | 0.27        | 8.2      | X                   | 0.13    |
| SPA-6                          | J1R646           | 4/8/2013    | 3950         | Х              | 3.8        | 273        | X          | 0.10         | 0.022         | <u> </u> | 0.0060       | 0.32          | В       | 0.27        |          | X                   | 0.12    |
| SPA-7                          | J1R647           | 4/8/2013    | 3940         | X              | 3.5        | 249        | X          | 0.096        | 0.0055        | U        | 0.0055       | 0.25          | U       | 0.25        | 9.6      | $\frac{\hat{x}}{x}$ | 0.12    |
| SPA-8                          | J1RKM8           | 4/29/2013   | 4190         | X              | 3.4        | 308        | X          | 0.091        | 0.0054        | U        | 0.0054       | 0.24          | U       | 0.24        |          | + <del>^</del>      | 0.11    |
| SPA-9                          | JIRKM9           | 4/29/2013   | 4460         | X              | 3.4        | 291        | X          | 0.091        | 0.011         | В        | 0.0051       | 0.24          | U       | 0.24        | 10.0     |                     | 0.17    |
| SPA-10                         | J1RKM6           | 4/29/2013   | 4390         | X              | 3.6        | 292        | X          | 0.099        | 0.0085        | В        | 0.0059       | 0.33          | В       | 0.26        | 9.9      | X                   | 0.12    |
| SPA-11                         | JIRKM7           | 4/29/2013   | 4460         | X              | 3.5        | 265        | X          | 0.096        | 0.0070        | В        | 0.0062       | 0.25          | U       | 0.25        | 12.9     | X_                  | 0.12    |
| SPA-12                         | JIRKM5           | 4/29/2013   | 4300         | X              | 3.5        | 273        | X          | 0.095        | 0.0048        | U        | 0.0048       | 0.33          | В       | 0.25        | 10.9     | X                   |         |
| Split of J1R645                | J1R670           | 4/8/2013    | 3830         | 1              | 17.6       | 263        | N          | 0.33         | 0.015         | В        | 0.011        | 0.67          | U       | 0.67        | 8.8      |                     | 0.48    |
| FS-1                           | J1RJ78           | 3/15/2013   | 4400         | X              | 3.4        | 298        |            | 0.091        | 0.013         | В        | 0.0057       | 0.39          | В       | 0.24        | 8.0      |                     | 0.1     |
| FS-2                           | J1PWC9           | 9/18/2012   | 4710         | X              | 3.4        | 307        | X          | 0.092        | 0.054         |          | 0.0059       | 0.51          | В       | 0.24        | 10.8     | X                   | 0.11    |
| FS-3                           | J1PWD0           | 9/18/2012   | 4580         | X              | 3.5        | 314        | X          | 0.094        | 0.032         |          | 0.0058       | 0.34          | В       | 0.24        | 9.4      | X                   | 0.17    |
| FS-4                           | JIPWDI           | 9/18/2012   | 5190         | X              | 3.6        | 337        | X          | 0.098        | 0.015         | В        | 0.0052       | 0.41          | В       | 0.25        | 10.8     | X                   | 0.17    |
| FS-5                           | J1PWD2           | 9/18/2012   | 3200         | X              | 3.6        | 227        | X          | 0.096        | 0.0055        | U        | 0.0055       | 0.37          | В       | 0.25        | 5.4      | X                   | 0.13    |
| FS-6                           | J1PWD3           | 9/18/2012   | 4230         | X              | 3.4        | 321        | X          | 0.091        | 0.13          |          | 0.0052       | 0.30          | В       | 0.24        | 8.1      | X                   | 0.1     |
|                                | J1R160           | 9/4/2012    | 4290         | X              | 3.6        | 287        | X          | 0.096        | 0.15          |          | 0.0059       | 0.35          | В       | 0.25        | 8.6      | X                   | 0.1     |
| FS-5 (100-D-77)<br>FS D-83:1-1 | J1RN38           | 5/29/2013   | 3720         | 1              | 3.5        | 262        |            | 0.096        | 0.0059        | UN       | 0.0059       | 0.25          | U       | 0.25        | 7.6      | M                   | 0.1     |
|                                | JIRN39           | 5/29/2013   | 3960         | +-             | 3.4        | 310        | 1          | 0,093        | 0.0063        | U        | 0.0063       | 0.24          | U       | 0.24        | 9.1      |                     | 0.1     |
| FS D-83:1-2                    | J1RN39<br>J1RN40 | 5/29/2013   | 4370         |                | 3.4        | 281        | $\top$     | 0.092        | 0.0065        | U        | 0.0065       | 0.24          | U       | 0.24        | 10.2     |                     | 0.1     |
| FS D-83:1-3                    | J1RN40<br>J1R654 | 4/8/2013    | 24.2         | +x             | 3.7        | 5.0        | + x        | 0.10         | 0.0048        | U        | 0.0048       | 0.26          | U       | 0.26        | 0.40     | BX                  | 0.12    |
| Equipment Blank                | J1K034           | 4/6/2013    | 1 24.2       |                | 1          |            |            | 1 2.2.2      |               | chment   |              | 1             |         |             | Sheet No |                     | 4 of 31 |

 Attachment
 1

 Originator
 N. K. Schiffern

 Checked
 J. D. Skoglie

 Calc. No.
 0100D-CA-V0508

heet No. 4 of 31
Date 07/08/13
Date 07/08/13
Rev. No. 0

|            | Po    | tassiu       | m    | S     | eleniu | m    |       | Silicon |     | Ī     | Silver |      |
|------------|-------|--------------|------|-------|--------|------|-------|---------|-----|-------|--------|------|
| ample Date | mg/kg | 0            | POL  | mg/kg | Q      | PQL  | mg/kg | Q       | PQL | mg/kg | Q      | PQL  |
| 9/18/2012  | 1050  |              | 40.0 | 0.84  | Ü      | 0.84 | 376   | XJ      | 5.5 | 0.16  | U      | 0.16 |
| 9/18/2012  | 1090  |              | 38.2 | 0.80  | ็บ     | 0.80 | 424   | XJ      | 5.3 | 0.15  | U      | 0.15 |
| 9/18/2012  | 1280  |              | 38.3 | 0.80  | U      | 0.80 | 538   | NXJ     | 5.3 | 0.15  | U      | 0.15 |
| 9/18/2012  | 919   | 1            | 36.2 | 0.76  | U      | 0.76 | 371   | XJ      | 5.0 | 0.14  | U      | 0.14 |
| 3/15/2013  | 588   |              | 38.8 | 0.81  | U      | 0.81 | 134   | N       | 5.4 | 0.15  | U      | 0.15 |
| 9/18/2012  | 858   | -            | 35.3 | 0.74  | U      | 0.74 | 418   | XJ      | 4.9 | 0.14  | U      | 0.14 |
| 9/18/2012  | 856   |              | 36.6 | 0.77  | U      | 0.77 | 318   | XJ      | 5.1 | 0.14  | U      | 0.14 |
| 9/18/2012  | 732   | <b>—</b>     | 34.5 | 0.72  | U      | 0.72 | 329   | XJ      | 4.8 | 0.13  | U      | 0.13 |
| 9/18/2012  | 645   |              | 36.8 | 0.77  | Ü      | 0.77 | 209   | XJ      | 5.1 | 0.14  | U      | 0.14 |
| 9/18/2012  | 865   | <del> </del> | 38.3 | 0.80  | tu     | 0.80 | 348   | XJ      | 5.3 | 0.15  | U      | 0.15 |

| EXC-2               | JIPW82 | 9/18/2012 | 919  |          | 30.2 | 0.70  | Lu | 0.70  | 3/1  | AJ       | 3.0  | 0.14  |   | U.17  | 334 | +          | 32.1  |
|---------------------|--------|-----------|------|----------|------|-------|----|-------|------|----------|------|-------|---|-------|-----|------------|-------|
| EXC-4               | J1RJ77 | 3/15/2013 | 588  |          | 38.8 | 0.81  | U  | 0.81  | 134  | N        | 5.4  | 0.15  | U | 0.15  | 282 | <b>.</b>   | 55.8  |
| EXC-5               | JIPW85 | 9/18/2012 | 858  |          | 35.3 | 0.74  | U  | 0.74  | 418  | XJ       | 4.9  | 0.14  | U | 0.14  | 335 | ļ          | 50.8  |
| EXC-6               | J1PW86 | 9/18/2012 | 856  |          | 36.6 | 0.77  | U  | 0.77  | 318  | XJ       | 5.1  | 0.14  | U | 0.14  | 262 |            | 52.7  |
| EXC-7               | JIPW87 | 9/18/2012 | 732  |          | 34.5 | 0.72  | U  | 0.72  | 329  | XJ       | 4.8  | 0.13  | U | 0.13  | 354 | <b>↓</b> . | 49.6  |
| EXC-8               | JIPW88 | 9/18/2012 | 645  |          | 36.8 | 0.77  | U  | 0.77  | 209  | XJ       | 5.1  | 0.14  | U | 0.14  | 301 |            | 53.0  |
| EXC-9               | J1PW89 | 9/18/2012 | 865  |          | 38.3 | 0.80  | U  | 0.80  | 348  | XJ       | 5.3  | 0.15  | U | 0.15  | 295 |            | 55.1  |
| EXC-10              | J1PW90 | 9/18/2012 | 918  |          | 39.0 | 0.82  | U  | 0.82  | 434  | XJ       | 5.4  | 0.15  | U | 0.15  | 351 |            | 56.1  |
| EXC-11              | J1PW91 | 9/18/2012 | 600  |          | 40.9 | 0.86  | U  | 0.86  | 203  | XJ       | 5.6  | 0.16  | U | 0.16  | 266 | 1          | 58.8  |
| EXC-12              | J1PW92 | 9/18/2012 | 770  |          | 35.3 | 0.74  | U  | 0.74  | 349  | XJ       | 4.9  | 0.14  | U | 0.14  | 337 |            | 50.8  |
| Split of J1PW83     | JIPWF8 | 9/18/2012 | 944  | <u> </u> | 353  | 0.265 | U  | 0.265 | 256  |          | 1.76 | 0.176 | U | 0.176 | 232 | ļ          | 44.1  |
| SPA-5               | J1R645 | 4/8/2013  | 786  |          | 37.5 | 0.79  | U  | 0.79  | 104  | N        | 5.2  | 0.15  | U | 0.15  | 275 |            | 54.0  |
| Duplicate of J1R645 | J1R653 | 4/8/2013  | 735  |          | 37.2 | 0.78  | U  | 0.78  | 137  | N        | 5.1  | 0,15  | U | 0.15  | 219 |            | 53.5  |
| SPA-I               | J1R641 | 4/8/2013  | 920  |          | 36.2 | 0.76  | U  | 0.76  | 128  | N        | 5.0  | 0.14  | U | 0.14  | 230 | <u> </u>   | 52,1  |
| SPA-2               | J1R642 | 4/8/2013  | 1020 | <b></b>  | 37.9 | 0.80  | U  | 0.80  | 114  | N        | 5.2  | 0.15  | U | 0.15  | 290 |            | 54.6  |
| SPA-3               | J1R643 | 4/8/2013  | 847  |          | 37.1 | 0.78  | U  | 0.78  | 109  | N        | 5.1  | 0.14  | U | 0.14  | 309 |            | 53.5  |
| SPA-4               | J1R644 | 4/8/2013  | 566  |          | 42.1 | 0.88  | U  | 0.88  | 116  | N        | 5.8  | 0.16  | U | 0.16  | 312 |            | 60.6  |
| SPA-6               | J1R646 | 4/8/2013  | 889  |          | 42.0 | 0.88  | U  | 0.88  | 118  | N        | 5.8  | 0.16  | U | 0.16  | 258 |            | 60.4  |
| SPA-7               | J1R647 | 4/8/2013  | 638  |          | 39.2 | 0.82  | U  | 0.82  | 93.8 | N        | 5.4  | 0.15  | U | 0.15  | 247 | 11         | 56.5  |
| SPA-8               | J1RKM8 | 4/29/2013 | 1140 |          | 37.2 | 0.78  | U  | 0.78  | 293  | <u> </u> | 5.1  | 0.15  | U | 0.15  | 206 |            | 53.5  |
| SPA-9               | JIRKM9 | 4/29/2013 | 940  |          | 37.2 | 0.78  | U  | 0.78  | 356  | ļ        | 5.1  | 0.15  | U | 0.15  | 190 |            | 53.5  |
| SPA-10              | JIRKM6 | 4/29/2013 | 945  |          | 40.4 | 0.85  | U  | 0.85  | 325  |          | 5.6  | 0.16  | U | 0.16  | 228 | ļi         | 58.1  |
| SPA-11              | J1RKM7 | 4/29/2013 | 958  |          | 39.2 | 0.82  | U  | 0.82  | 389  |          | 5.4  | 0.15  | U | 0.15  | 164 |            | 56.5  |
| SPA-12              | JIRKM5 | 4/29/2013 | 977  |          | 38.9 | 0.82  | U  | 0.82  | 304  | N        | 5.4  | 0.15  | U | 0.15  | 194 |            | 56.0  |
| Split of J1R645     | J1R670 | 4/8/2013  | 837  | BN       | 715  | 0.61  | U  | 0.61  | 1100 |          | 8.2  | 0.5   | U | 0.5   | 279 | N          | 99.9  |
| FS-1                | J1RJ78 | 3/15/2013 | 567  |          | 37.2 | 0.78  | U  | 0.78  | 128  | N        | 5.1  | 0.15  | U | 0.15  | 350 |            | 53.5  |
| FS-2                | JIPWC9 | 9/18/2012 | 780  |          | 37.7 | 0.79  | U  | 0.79  | 548  | XN       | 5.2  | 0.15  | U | 0.15  | 371 |            | 54.3  |
| FS-3                | J1PWD0 | 9/18/2012 | 710  |          | 38.5 | 0.81  | U  | 0.81  | 437  | XN       | 5.3  | 0.15  | U | 0.15  | 335 |            | 55.4  |
| FS-4                | J1PWD1 | 9/18/2012 | 776  |          | 40.1 | 0.84  | U  | 0.84  | 385  | XN       | 5.5  | 0.16  | U | 0.16  | 296 |            | 57.8  |
| FS-5                | J1PWD2 | 9/18/2012 | 573  |          | 39.5 | 0.83  | U  | 0.83  | 265  | XN       | 5.4  | 0.15  | U | 0.15  | 577 | <u> </u>   | 56.8  |
| FS-6                | JIPWD3 | 9/18/2012 | 597  |          | 37.5 | 0.79  | U  | 0.79  | 299  | XN       | 5.2  | 0.15  | U | 0.15  | 325 |            | 53.9  |
| FS-5 (100-D-77)     | J1R160 | 9/4/2012  | 1090 |          | 39.4 | 0.83  | U  | 0.83  | 130  | N        | 5.4  | 0.15  | U | 0.15  | 641 | ļ          | 56.7  |
|                     |        |           |      |          |      |       | 1  |       |      |          |      | 0.15  |   | 0.15  | 227 | 1 3 4      | E / 1 |

39.2

38.2

37.6

41.1

В

0.82

0.80

0.79

0.86

U

U

U

U

0.82

0.80

0.79

0.86

307

176

345

N

N

5.4

5.3

5.2

Attachment 1, 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Verification Sample Results (Metals).

HEIS

Number

J1PW83

JIPW93

JIPW81

J1PW82

JIRN38

JIRN39

JIRN40

J1R654

5/29/2013

5/29/2013

5/29/2013

4/8/2013

556

442

713

46.9

Sample Area

EXC-3

Duplicate of J1PW83

EXC-1

EXC-2

FS D-83:1-1

FS D-83:1-2

FS D-83:1-3

Equipment Blank

N N 5.7 0.16 U 0.16 59.1 125 Sheet No. Attachment N. K. Schiffern Originator J. D. Skoglie 0100D-CA-V0508 Checked Calc. No.

0.15

0.15

0.15

U

U

U

0.15

0.15

0.15

237

210

208

5 of 31 07/08/13 Date 07/08/13 Date Rev. No. 0

M

56.4

54.9

54.1

59.1

Sodium

Q

PQL

57.6

55.0

55.2

52.1

mg/kg

280

269

258

| Attachment 1 | 100-D-77 | 100.D.62 | and 100-D-83:1 | Wacta Sites | Varification | Canania Daenita | (Matale) |
|--------------|----------|----------|----------------|-------------|--------------|-----------------|----------|
|              |          |          |                |             |              |                 |          |

| Sample Area         | HEIS   | Sample Date | Va    | madio | OIL . |       | Zinc |      |
|---------------------|--------|-------------|-------|-------|-------|-------|------|------|
|                     | Number | I           | mg/kg | Q     | PQL   | mg/kg | Q    | PQL  |
| EXC-3               | JIPW83 | 9/18/2012   | 40.4  |       | 0.092 | 35.0  | X    | 0.39 |
| Duplicate of J1PW83 | J1PW93 | 9/18/2012   | 41.6  |       | 0.088 | 34.8  | Х    | 0.37 |
| EXC-I               | J1PW81 | 9/18/2012   | 54.9  |       | 0.088 | 65.7  | Х    | 0.37 |
| EXC-2               | JIPW82 | 9/18/2012   | 65.0  |       | 0.083 | 48.8  | Х    | 0.35 |
| EXC-4               | J1RJ77 | 3/15/2013   | 75.3  |       | 0.44  | 47.4  | X    | 0.38 |
| EXC-5               | J1PW85 | 9/18/2012   | 71.8  |       | 0.40  | 53.5  | X    | 0.34 |
| EXC-6               | JIPW86 | 9/18/2012   | 71.6  |       | 0.42  | 42.9  | Х    | 0.36 |
| EXC-7               | J1PW87 | 9/18/2012   | 71.2  |       | 0.40  | 41.5  | X    | 0.33 |
| EXC-8               | J1PW88 | 9/18/2012   | 84.8  |       | 0.42  | 44.6  | Х    | 0.36 |
| EXC-9               | JIPW89 | 9/18/2012   | 73.9  |       | 0.44  | 44.7  | Х    | 0.37 |
| EXC-10              | JIPW90 | 9/18/2012   | 75.0  |       | 0.45  | 45.2  | X    | 0.38 |
| EXC-11              | JIPW91 | 9/18/2012   | 85.4  |       | 0.47  | 45.3  | Х    | 0.40 |
| EXC-12              | J1PW92 | 9/18/2012   | 58.0  |       | 0.081 | 39.6  | X    | 0.34 |
| Split of J1PW83     | JIPWF8 | 9/18/2012   | 36.7  |       | 2.21  | 30.8  |      | 8.82 |
| SPA-5               | J1R645 | 4/8/2013    | 52.6  | X     | 0.086 | 38.5  | Х    | 0.36 |
| Duplicate of J1R645 | J1R653 | 4/8/2013    | 49.5  | X     | 0.085 | 37.8  | Х    | 0.36 |
| SPA-1               | J1R641 | 4/8/2013    | 51.1  | X     | 0.083 | 44.5  | X    | 0.35 |
| SPA-2               | J1R642 | 4/8/2013    | 53.9  | X     | 0.087 | 45.3  | X    | 0.37 |
| SPA-3               | J1R643 | 4/8/2013    | 55.2  | X     | 0.085 | 51.3  | Х    | 0.36 |
| SPA-4               | J1R644 | 4/8/2013    | 58.0  | Х     | 0.097 | 39.4  | X    | 0.41 |
| SPA-6               | J1R646 | 4/8/2013    | 53.6  | Х     | 0.096 | 43.2  | Х    | 0.41 |
| SPA-7               | J1R647 | 4/8/2013    | 51.5  | X     | 0.09  | 36.9  | X    | 0.38 |
| SPA-8               | J1RKM8 | 4/29/2013   | 45.5  |       | 0.085 | 38.2  | X    | 0.36 |
| SPA-9               | J1RKM9 | 4/29/2013   | 45.4  |       | 0.085 | 39.6  | X    | 0.36 |
| SPA-10              | JIRKM6 | 4/29/2013   | 46.2  |       | 0.093 | 36.2  | X    | 0.39 |
| SPA-11              | JIRKM7 | 4/29/2013   | 40.0  |       | 0.090 | 33.5  | X    | 0.38 |
| SPA-12              | JIRKM5 | 4/29/2013   | 46.8  |       | 0.089 | 37.3  | X    | 0.38 |
| Split of J1R645     | JIR670 | 4/8/2013    | 44.8  | N     | 2.7   | 37.4  | N    | 4.2  |
| FS-1                | J1RJ78 | 3/15/2013   | 76.1  |       | 0.43  | 47.4  | X    | 0.36 |
| FS-2                | J1PWC9 | 9/18/2012   | 80.0  |       | 0.43  | 46.9  | X    | 0.37 |
| FS-3                | J1PWD0 | 9/18/2012   | 80.4  |       | 0.44  | 43.4  | X    | 0.37 |
| FS-4                | JIPWDI | 9/18/2012   | 89.0  |       | 0.46  | 48.2  | Х    | 0.39 |
| FS-5                | J1PWD2 | 9/18/2012   | 113   |       | 0.45  | 44.0  | X    | 0.38 |
| FS-6                | JIPWD3 | 9/18/2012   | 82.8  |       | 0.43  | 46.5  | X    | 0.36 |
| FS-5 (100-D-77)     | J1R160 | 9/4/2012    | 59.8  | X     | 0.090 | 47.2  | X    | 0.38 |
| FS D-83:1-1         | JIRN38 | 5/29/2013   | 52.6  |       | 0.090 | 36.9  |      | 0.38 |
| FS D-83:1-2         | JIRN39 | 5/29/2013   | 63.8  |       | 0.088 | 43.6  |      | 0.37 |
| FS D-83:1-3         | JIRN40 | 5/29/2013   | 57.4  |       | 0.086 | 38.4  |      | 0.36 |
| Equipment Blank     | J1R654 | 4/8/2013    | 0.46  | BX    | 0.094 | 1.5   | X    | 0.40 |

| Attachment | ı               |   |
|------------|-----------------|---|
| Originator | N. K. Schiffern | _ |
| Checked    | J. D. Skoglie   | _ |
| Calc. No.  | 0100D-CA-V0508  | _ |

| Sheet No. | 6 of 31  |
|-----------|----------|
| Date      | 07/08/13 |
| Date      | 07/08/13 |
| Rev. No.  | 0        |

-34

| Sample Area         | HEIS   | Sample Date | В     | romide |      | С     | hloride |      | F     | luoride | е    | 1                                        | Nitrate                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nitrite      |                   |               |         | Vitrate     |
|---------------------|--------|-------------|-------|--------|------|-------|---------|------|-------|---------|------|------------------------------------------|-------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|---------------|---------|-------------|
| Sample Area         | Number | Sample Date | mg/kg | Q      | PQL  | mg/kg | Q       | PQL  | mg/kg | Q       | PQL  | mg/kg                                    | Q                       | PQL                                      | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q            | PQL               | mg/kg<br>0.67 | Q<br>BJ | PQL<br>0.31 |
| EXC-3               | J1PW83 | 9/18/2012   | 0.38  | U      | 0.38 | 1.9   | U       | 1.9  | 0.80  | U       | 0.80 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                         | 3.30.6504                                | Comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the commen |              | \$ 10 m           | 0.67          | BJ      | 0.31        |
| Duplicate of J1PW83 | JIPW93 | 9/18/2012   | 0.36  | U      | 0.36 | 1.8   | U       | 1.8  | 0.77  | U       | 0.77 | 1 1 1 1 1 1 1                            |                         | 225                                      | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100          |                   |               | BJ      | 0.29        |
| EXC-1               | JIPW81 | 9/18/2012   | 0.38  | U      | 0.38 | 1.9   | U       | 1.9  | 0.92  | BN      | 0.81 | · Carrier and                            | -                       | 100                                      | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.2         | 198               | 0.77<br>2.6   | BJ      | 0.31        |
| EXC-2               | J1PW82 | 9/18/2012   | 0.38  | U      | 0.38 | 4.8   | В       | 1.9  | 0.80  | U       | 0.80 | of An                                    | 2 A                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Lawrence Commence |               | В       | 0.32        |
| EXC-4               | J1RJ77 | 3/15/2013   | 0.39  | U      | 0.39 | 2.7   | В       | 2.0  | 0.83  | U       | 0.83 | 2                                        |                         | er call                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Sec. 18           | 0.71          | BJ      | 0.32        |
| EXC-5               | J1PW85 | 9/18/2012   | 0.39  | U      | 0.39 | 2.0   | U       | 2.0  | 0.82  | U       | 0.82 |                                          | 1                       | <b>英联节队</b>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300          | 1                 | 0.95          | BJ      | 0.30        |
| EXC-6               | J1PW86 | 9/18/2012   | 0.38  | U      | 0.38 | 3.8   | В       | 1.9  | 0.80  | U       | 0.80 |                                          | 107.2                   |                                          | li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 100               |               | BJ      | 0.32        |
| EXC-7               | J1PW87 | 9/18/2012   | 0.39  | U      | 0.39 | 2.0   | U       | 2.0  | 0.83  | U       | 0.83 | Control Pig.                             | 13615                   | ·                                        | 37727431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1            |                   | 0.84          | BJ      | 0.32        |
| EXC-8               | J1PW88 | 9/18/2012   | 0.39  | U      | 0.39 | 2.0   | U       | 2.0  | 0.83  | U       | 0.83 |                                          | 13%                     |                                          | 2019 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10000        | BASSIST.          | 0.49          | BJ      | 0.32        |
| EXC-9               | JIPW89 | 9/18/2012   | 0.37  | U      | 0.37 | 1.9   | U       | 1.9  | 0.78  | U       | 0.78 | D                                        |                         |                                          | 3800000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.60        | (3)               | 0.57          | BJ      | 0.30        |
| EXC-10              | J1PW90 | 9/18/2012   | 0.37  | U      | 0.37 | 1.9   | U       | 1.9  | 0.77  | U       | 0.77 |                                          | 4                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Projection 1 |                   | 0.37          | UR      | 0.30        |
| EXC-11              | J1PW91 | 9/18/2012   | 0.37  | U      | 0.37 | 1.9   | U       | 1.9  | 0.79  | U       | 0.79 | 58 mm                                    | Š.                      | ا موانه الدريان                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            | *****             | 1.7           | BJ      | 0.3         |
| EXC-12              | J1PW92 | 9/18/2012   | 0.38  | U      | 0.38 | 1.9   | U       | 1.9  | 0.83  | В       | 0.80 | 20,50                                    | 37.34                   | والتسوي                                  | 84740037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIE          | 1.0               | 11.7          | DJ      | 0.5         |
| Split of J1PW83     | J1PWF8 | 9/18/2012   | 1.0   | U      | 1.0  | 1.0   | U       | 1.0  | 1.0   | U       | 1.0  | 1.5                                      | В                       | 1.0                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UR           | 1.0               | 1.2           | В       | 0.3         |
| SPA-5               | JIR645 | 4/8/2013    | 0.40  | U      | 0.40 | 5.9   |         | 2.0  | 0.84  | U       | 0.84 | 1                                        | Ema                     | n de la company                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000         | الم دوعون وا      | 1.3           | В       | 0.3         |
| Duplicate of J1R645 | J1R653 | 4/8/2013    | 0.40  | U      | 0.40 | 6.5   |         | 2.0  | 0.85  | U       | 0.85 | LONG TO                                  |                         | 10 C C C C C C C C C C C C C C C C C C C | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -            |                   | 0.99          | В       | 0.3         |
| SPA-1               | J1R641 | 4/8/2013    | 0.39  | U      | 0.39 | 3.1   | В       | 2.0  | 0.82  | U       | 0.82 | 100                                      |                         |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                   | 1.7           | В       | 0.3         |
| SPA-2               | J1R642 | 4/8/2013    | 0.40  | U      | 0.40 | 3.9   | В       | 2.0  | 0.84  | U       | 0.84 | , E                                      |                         | - 01                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 100               | 3.2           | Б       | 0.3         |
| SPA-3               | J1R643 | 4/8/2013    | 0.41  | U      | 0.41 | 7.3   |         | 2.1  | 0.87  | U       | 0.87 |                                          |                         | 14.7                                     | Carried Con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 7 1               | 0.90          | В       | 0.3         |
| SPA-4               | J1R644 | 4/8/2013    | 0.39  | U      | 0.39 | 2.9   | В       | 2.0  | 0.84  | U       | 0.84 | No.                                      | 10.3                    | 10% 2-                                   | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                   | 1.9           | В       | 0.3         |
| SPA-6               | J1R646 | 4/8/2013    | 3.4   |        | 0.42 | 19.1  |         | 2.1  | 0.89  | U       | 0.89 | 82.850.30                                |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 200        | 1000000           | 0.94          | В       | 0.3         |
| SPA-7               | J1R647 | 4/8/2013    | 2.1   |        | 0.41 | 9.2   |         | 2.1  | 0.87  | U       | 0.87 |                                          | 1                       | 3 3 7 7 3 4 7 5                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | A.C. CONTRACT     |               | В       | 0.3         |
| SPA-8               | JIRKM8 | 4/29/2013   | 0.38  | U      | 0.38 | 4.2   | В       | 1.9  | 0.81  | U       | 0.81 | 37.33                                    |                         | · 通 选 %斯                                 | 45, 50 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.0         | - 4               | 0.96          | В       | 0.3         |
| SPA-9               | JIRKM9 | 4/29/2013   | 0.39  | U      | 0.39 | 4.1   | В       | 2.0  | 0.83  | U       | 0.83 | 1. 1                                     |                         | ike gr                                   | 78 ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3            | 1                 | 0.80          | B       | 0.3         |
| SPA-10              | JIRKM6 | 4/29/2013   | 0.38  | U      | 0.38 | 14.1  |         | 1.9  | 0.81  | U       | 0.81 | 123/43                                   |                         | 15 15 15 15 15 15 15 15 15 15 15 15 15 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1.15              | 0.82          | В       | 0.3         |
| SPA-11              | JIRKM7 | 4/29/2013   | 0.39  | U      | 0.39 | 4.3   | В       | 2.0  | 0.83  | U       | 0.83 | 73523                                    | Police                  | 7, 904                                   | 4731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 7 5               | 0.82          | BN      | 0.3         |
| SPA-12              | J1RKM5 | 4/29/2013   | 0.39  | UN     | 0.39 | 4.2   | BN      | 2.0  | 0.83  | UN      | 0.83 | 20°4                                     |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   | 0.60          | 1314    | 0.0         |
| Split of J1R645     | J1R670 | 4/8/2013    | 0.26  | U      | 0.26 | 5.0   |         | 0.21 | 0.38  | В       | 0.10 | 100000                                   |                         |                                          | 1,41.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1            | 100               | 0.33          | UR      | 0.0         |
| FS-1                | J1RJ78 | 3/15/2013   | 0.40  | U      | 0.40 | 2.7   | В       | 2.1  | 0.86  | U       | 0.86 | 02030                                    |                         |                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 3133              | -             | B       | 0.3         |
| FS-2                | JIPWC9 | 9/18/2012   | 0.38  | U      | 0.38 | 15.5  |         | 1.9  | 0.81  | U       | 0.81 | 338,300                                  |                         | 10000                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2            |                   | 1.4           | В       | 0.3         |
| FS-3                | JIPWD0 | 9/18/2012   | 0.39  | U      | 0.39 | 4.9   | В       | 2.0  | 0.82  | В       | 0.82 | (A) (A) (A)                              |                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   |               | В       | 0.3         |
| FS-4                | JIPWDI | 9/18/2012   | 0.38  | U      | 0.38 | 1.9   | U       | 1.9  | 1.4   | В       | 0.80 | Carlo de Santon e                        | un <del>di</del> r met- |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100          |                   | 0.88          | В       | 0.3         |
| FS-5                | J1PWD2 | 9/18/2012   | 0.38  | U      | 0.38 | 2.0   | U       | 2.0  | 0.81  | U       | 0.81 | N 1.                                     |                         | 17 m                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 155.         |                   |               |         | 0.3         |
| FS-6                | JIPWD3 | 9/18/2012   | 0.38  | U      | 0.38 | 1.9   | U       | 1.9  | 0.81  | U       | 0.81 |                                          |                         | 1.17.2                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00         | 6                 | 0.86          | B       | 0.3         |
| FS-5 (100-D-77)     | JIR160 | 9/4/2012    | 0.40  | U      | 0.40 | 2.3   | В       | 2.0  | 0.85  | UN      | 0.85 |                                          | 7 40                    | TO SEE SEE                               | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                   | 0.82          | B       |             |
| FS D-83:1-1         | JIRN38 | 5/29/2013   | 0.40  | U      | 0.40 | 2.0   | U       | 2.0  | 0.85  | U       | 0.85 |                                          | P LE                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                   | 0.32          | UR      | 0.          |
| FS D-83:1-2         | JIRN39 | 5/29/2013   | 0.40  | U      | 0.40 | 2.0   | U       | 2.0  | 1.3   | В       | 0.84 | X = 7/2                                  |                         | 7 7 7                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 709030            | 0.32          | UR      | 0.:         |
| FS D-83:1-3         | JIRN40 | 5/29/2013   | 0.41  | U      | 0.41 | 4.8   | В       | 2.1  | 0.87  | U       | 0.87 |                                          | 5 4 5                   | 200                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>李夏</b>    | 17,175            | 0.33          | UR      | 0.          |

| Attachment | 1               | Sheet No. | 7 of 31  |
|------------|-----------------|-----------|----------|
| Originator | N. K. Schiffern | Date      | 07/08/13 |
| Checked    | J. D. Skoglie   | Date      | 07/08/13 |
| Calc. No.  | 0100D-CA-V0508  | Rev. No.  | 0        |

| Sample Area         | HEIS<br>Number | Sample Date | Nitroger | in Nit<br>Nitrate | rite and | Nitrog | en in l      | Nitrite |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iosph    |                 | Phos          | sphoro<br>hospha |      |             | Sulfat        | e    | TH                | H - Di | esel        |
|---------------------|----------------|-------------|----------|-------------------|----------|--------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|---------------|------------------|------|-------------|---------------|------|-------------------|--------|-------------|
| EXC-3               |                |             | mg/kg    | Q                 | PQL      | mg/kg  | Q            | PQL     | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q        | PQL             | mg/kg         | Q                | PQL  | mg/kg       | Q             | PQL  | ug/kg             | Q      | PQ          |
|                     | JIPW83         | 9/18/2012   | 1,2      | N                 | 0.30     | 0.33   | UR           | 0.33    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 | 1.2           | UR               | 1.2  | 1.7         | U             | 1.7  | 24000             |        | 630         |
| Duplicate of J1PW83 | JIPW93         | 9/18/2012   | 1.3      |                   | 0.30     | 0.31   | UR           | 0.31    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100      | 1 1 1 mm 15 mg  | 1.2           | UR               | 1.2  | 1.6         | U             | 1.6  | 3000              | J      | 660         |
| EXC-1               | JIPW81         | 9/18/2012   | 1.6      | N                 | 0.31     | 0.33   | UR           | 0.33    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | (1)             | 1.2           | UNR              | 1.2  | 1.7         | U             | 1.7  | 1800              | J      | 680         |
| EXC-2               | JIPW82         | 9/18/2012   | 3.3      |                   | 0.30     | 0.33   | UR           | 0.33    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A        |                 | 1.2           | UR               | 1.2  | 81.7        |               | 1.7  | 1900              | 1      | 680         |
| EXC-4               | J1RJ77         | 3/15/2013   | 0.30     | U                 | 0.30     | 0.34   | UR           | 0.34    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.8     |                 | 1.3           | UR               | 1.3  | 9.7         |               | 1.7  | 4100              |        | 680         |
| EXC-5               | JIPW85         | 9/18/2012   | 7.8      |                   | 0.31     | 0.34   | UR           | 0.34    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | The Hall        | 1.2           | UR               | 1.2  | 34.3        |               | 1.7  | 5300              |        | 670         |
| EXC-6               | JIPW86         | 9/18/2012   | 1.4      |                   | 0.32     | 0.33   | UR           | 0.33    | A Children                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100      |                 | 1.2           | UR               | 1.2  | 51.5        |               | 1.7  | 2200              | J      | 650         |
| EXC-7               | JIPW87         | 9/18/2012   | 1.3      |                   | 0.31     | 0.34   | UR           | 0.34    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 30 2.0          | 1.3           | UR               | 1.3  | 9.9         | <b>—</b>      | 1.7  | 1600              | J      | 670         |
| EXC-8               | JIPW88         | 9/18/2012   | 1.0      |                   | 0.31     | 0.34   | UR           | 0.34    | 9 20 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | reservation of  | 1.2           | UR               | 1.2  | 1.7         | υ             | 1.7  | 770               | J      | 690         |
| EXC-9               | 11PW89         | 9/18/2012   | 1.1      |                   | 0.30     | 0.32   | UR           | 0.32    | 4.54.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 45.79           | 1.2           | UR               | 1.2  | 1.6         | U             | 1.6  | 1100              | j      | 670         |
| EXC-10              | JIPW90         | 9/18/2012   | 1.2      |                   | 0.31     | 0.32   | UR           | 0.32    | - S 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Land College    | 1.2           | UR               | 1.2  | 1.6         | U             | 1.6  | 670               | U      | 670         |
| EXC-11              | JIPW91         | 9/18/2012   | 1.2      |                   | 0.31     | 0.32   | UR           | 0.32    | 20 (do. 16 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1        |                 | 1.2           | UR               | 1.2  | 1.7         | U             | 1.7  | 1000              | J      | 630         |
| EXC-12              | J1PW92         | 9/18/2012   | 2.6      |                   | 0.30     | 0.33   | UR           | 0.33    | o" Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                 | 1.2           | UR               | 1.2  | 8.1         | -             | 1.7  | 660               | Ū      | 660         |
| Split of J1PW83     | JIPWF8         | 9/18/2012   | 0.46     | В                 | 0.10     |        | <b>公理</b> 0. | 1454    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UR       | 2.0             | Facility Care |                  | 2000 | 5.5         |               | 1.0  | 9800              |        | 3310        |
| SPA-5               | J1R645         | 4/8/2013    | 0.85     | C                 | 0.31     | 0.34   | UR           | 0.34    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11920    |                 | 1.3           | UR               | 1.3  | 11.4        |               | 1.8  | 3900              | JB     | 700         |
| Duplicate of J1R645 | J1R653         | 4/8/2013    | 1.1      | С                 | 0.31     | 0.35   | UR           | 0.35    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.5     |                 | 1.3           | UR               | 1.3  | 11.9        |               | 1.8  | 4500              | В      | 670         |
| SPA-1               | J1R641         | 4/8/2013    | 0.52     | ВМС               | 0.30     | 0.33   | UR           | 0.33    | WO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0      | 2008            | 1.2           | UR               | 1.2  | 6.6         |               | 1.7  | 4500              | В      | 700         |
| SPA-2               | J1R642         | 4/8/2013    | 1.4      | C                 | 0.31     | 0.34   | UR           | 0.34    | 445450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2010010  | 5 P. 19         | 1.3           | UR               | 1.3  | 9.9         |               | 1.8  | 6800              | В      | 700         |
| SPA-3               | J1R643         | 4/8/2013    | 3.1      |                   | 0.32     | 0.36   | UR           | 0.36    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 | 1.3           | UR               | 1.3  | 36.0        |               | 1.8  | 7400              | В      | 710         |
| SPA-4               | J1R644         | 4/8/2013    | 0.48     | BC                | 0.31     | 0.34   | UR           | 0.34    | V S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | All the section | 1.3           | UR               | 1.3  | 5.3         | -             | 1.8  | 2200              | JB     | 700         |
| SPA-6               | JIR646         | 4/8/2013    | 1.8      | C                 | 0.32     | 0.36   | UR           | 0.36    | 4 4 W 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 4 2 2  | \$144.84g       | 1.3           | UR               | 1.3  | 10.6        |               | 1.9  | 6100              | В      | 670         |
| SPA-7               | J1R647         | 4/8/2013    | 0.48     | BC                | 0.32     | 0.35   | UR           | 0.35    | 45.835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200      |                 | 1.3           | UR               | 1.3  | 4.5         | В             | 1.8  | 3200              | JB     |             |
| SPA-8               | JIRKM8         | 4/29/2013   | 0.56     | В                 | 0.30     | 0.33   | U            | 0.33    | * 10 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79.7     |                 | 1.2           | U                | 1.2  | 4.3         | В             | 1.7  | 5400              | B      | 680         |
| SPA-9               | JIRKM9         | 4/29/2013   | 0.32     | В                 | 0.30     | 0.34   | U            | 0.34    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -               | 1.2           | U                | 1.2  | 3.3         | В             | 1.7  | 4200              | В      | 660         |
| SPA-10              | J1RKM6         | 4/29/2013   | 0.30     | В                 | 0.29     | 0.33   | Ü            | 0.33    | 42-62-7-7-6-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - W      |                 | 1.2           | U                | 1.2  | 5.2         | D             | 1.7  | 6100              | В      | 660         |
| SPA-11              | JIRKM7         | 4/29/2013   | 0.53     | В                 | 0.31     | 0.34   | U            | 0.34    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 | 1.2           | U                | 1.2  | 4.3         | В             | 1.7  | 3100              | JB     | 670         |
| SPA-12              | J1RKM5         | 4/29/2013   | 0.64     | В                 | 0.31     | 0.34   | UN           | 0.34    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y ye     | Hama Palaina    | 1.2           | U                | 1.2  | 3.2         | В             | 1.7  | 3200              | JB     | 690         |
| Split of J1R645     | JIR670         | 4/8/2013    | 0.62     | NC                | 0.047    | 0.031  | UR           | 0.031   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В        | 0.73            | 0.00          |                  | 1.2  | 11.5        | Б             | 0.52 | 350               | U      | 350         |
| FS-1                | J1RJ78         | 3/15/2013   | 0.32     | U                 | 0.32     | 0.35   | UR           | 0.35    | Stage York (Congress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Service. | 3 3 To 18       | 1.3           | UR               | 1.3  | 16.0        |               | 1.8  | 2400              | I      | 690         |
| FS-2                | J1PWC9         | 9/18/2012   | 1.9      |                   | 0.29     | 0.33   | UR           | 0.33    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25       | The same of     | 1.2           | UR               | 1.2  | 56.2        |               | 1.7  | 16000             | 3      | 670         |
| FS-3                | J1PWD0         | 9/18/2012   | 1.6      |                   | 0.29     | 0.34   | UR           | 0.34    | Warrion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.00     | A               | 1.2           | UR               | 1.2  | 24.9        | $\rightarrow$ | 1.7  | 1400              |        |             |
| FS-4                | JIPWDI         | 9/18/2012   | 1.2      |                   | 0.31     | 0.33   | UR           | 0.33    | 18.04-1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | to the state of | 1.2           | UR               | 1.2  | 223         | -+            | 1.7  |                   | J      | 650         |
| FS-5                | J1PWD2         | 9/18/2012   | 1.2      |                   | 0.29     | 0.33   | UR           | 0.33    | AND RESIDENCE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T | 210,22   |                 | 1.2           | UR               | 1.2  | 3890        | D             | 17.1 | 680<br>910        | U      | 680         |
| FS-6                | J1PWD3         | 9/18/2012   | 1.0      |                   | 0.29     | 0.33   | UR           | 0.33    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 | 1.2           | UR               | 1.2  | 14.8        | D             |      |                   | J      | 640         |
| FS-5 (100-D-77)     | JIR160         | 9/4/2012    | 0.69     | В                 | 0.32     | 0.35   | UR           | 0.35    | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |          |                 | 1.3           | UNR              | 1.3  |             |               | 1.7  | 1400              | J      | 630         |
| FS D-83:1-1         | JIRN38         | 5/29/2013   | 0.31     | U                 | 0.31     | 0.35   | UR           | 0.35    | A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                 | 1.3           |                  |      | 49.6        |               | 1.8  | 9700              | В      | 700         |
| FS D-83:1-2         | JIRN39         | 5/29/2013   | 0.33     | U                 | 0.33     | 0.34   | UR           | 0.34    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8        | 4 25            | 1.3           | UNR              | 1.3  | 10.1        |               | 1.8  |                   |        |             |
| FS D-83:1-3         | JIRN40         | 5/29/2013   | 0.32     | UN                | 0.33     | 0.35   | UR           | 0.34    | William S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40.44    |                 | 1.3           | UR               | 1.3  | 325<br>11.6 |               | 1.8  | STOREST OF STREET | 40-15  | September 1 |

| Attachment_ | 1               | Sheet No. | 8 of 31  |
|-------------|-----------------|-----------|----------|
| Originator  | N. K. Schiffern | Date      | 07/08/13 |
| Checked     | J. D. Skoglie   | Date      | 07/08/13 |
| Calc. No.   | 0100D-CA-V0508  | Rev. No.  | 0        |

| C                   | HEIS   | ment 1. 100-D- | TPH -    |    |         | TPH - m           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      | ent So   |                                       | Percent | moistu<br>ample | ) .      |               | leasure |         |
|---------------------|--------|----------------|----------|----|---------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|----------|---------------------------------------|---------|-----------------|----------|---------------|---------|---------|
| Sample Area         | Number | Sample Date    | ug/kg    | 0  | POL     | ug/kg             | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PQL                    | %                    | Q        | PQL                                   | %       | Q               | PQL      | pН            | Q       | PQI     |
| EXC-3               | J1PW83 | 9/18/2012      | 32000    |    | 920     | 1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      |          | -1, 22, 20                            | 0.48    |                 | 0.10     | 9,44          | 1       | 0.100   |
| Duplicate of J1PW83 | J1PW93 | 9/18/2012      | 3900     |    | 960     | 100               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | G 1                  | 10.0     |                                       | 0.61    |                 | 0.10     | 9.67          | J       | 0.10    |
| EXC-I               | J1PW81 | 9/18/2012      | 6300     |    | 990     |                   | UT OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2235                   |                      | evir.    |                                       | 0.97    | -               | 0.10     | 9.16          | 3       | 0.10    |
| EXC-2               | JIPW82 | 9/18/2012      | 4600     |    | 1000    | 16 1 m            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | the party            |          | 4.1                                   | 0.70    |                 | 0.10     | 8.93          | J       | 0.10    |
| EXC-4               | J1RJ77 | 3/15/2013      | 5400     |    | 1000    | 4                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 1 1 3 4 5 V          |          |                                       | 3.8     |                 | 0.10     | 7.55          |         | 0.10    |
| EXC-5               | JIPW85 | 9/18/2012      | 16000    |    | 980     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      | 13-01    |                                       | 0.73    |                 | 0.10     | 9.12          | J       | 0.10    |
| EXC-6               | J1PW86 | 9/18/2012      | 2900     | J  | 960     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and S                  |                      |          |                                       | 0.88    |                 | 0.10     | 9.06          | J       | 0.10    |
| EXC-7               | J1PW87 | 9/18/2012      | 2200     | J  | 990     |                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S. Les Mar.            |                      |          |                                       | 0.85    |                 | 0.10     | 9.22          | 1       | 0.10    |
| EXC-8               | J1PW88 | 9/18/2012      | 1000     | U  | 1000    | Pratical No.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3 1 1                 |                      |          | · 技術分                                 | 1.4     |                 | 0.10     | 9.45          | J       | 0.10    |
| EXC-9               | J1PW89 | 9/18/2012      | 1200     | J  | 990     |                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                      |          | VS-08-155                             | 0.91    |                 | 0.10     | 9.43          | J       | 0.10    |
| EXC-10              | J1PW90 | 9/18/2012      | 990      | U  | 990     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      |          | 855                                   | 0.83    | _               | 0.10     | 9.36          | J       | 0.10    |
| EXC-11              | J1PW91 | 9/18/2012      | 1100     | J  | 920     | $1 \leq i \leq y$ | , 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | e area               |          | 1011/02/20                            | 0.73    |                 | 0.10     | 9.21          | I       | 0.10    |
| EXC-12              | J1PW92 | 9/18/2012      | 2300     | J  | 970     |                   | 15 15 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                      |          |                                       | 0.72    | Text Stead      | 0.10     | 9.00          | J       | 0.10    |
| Split of J1PW83     | J1PWF8 | 9/18/2012      | Print v. |    | · Sugar | 19900             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9940                   | 99.5                 |          | 0.10                                  |         |                 | 0.10     | 9.31          |         | 0.10    |
| SPA-5               | J1R645 | 4/8/2013       | 5700     | В  | 1000    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Cont.                |          | المراب المراب                         | 4.1     | -               | 0.10     | TIN A. SM III | +       | 0.10    |
| Duplicate of J1R645 | J1R653 | 4/8/2013       | 6800     | В  | 980     | 44                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      | 444      |                                       | 4.1     | -               | 0.10     | 9.32          | -       | 0.10    |
| SPA-1               | J1R641 | 4/8/2013       | 7000     | В  | 1000    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60 S 30                |                      |          |                                       | 4.0     | +               | 0.10     | 9.35          |         | 0.10    |
| SPA-2               | J1R642 | 4/8/2013       | 16000    | В  | 1000    | 1                 | 17.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | 12.3                 | Marati.  |                                       | 4.4     | +               | 0.10     | 9.33          |         | 0.10    |
| SPA-3               | J1R643 | 4/8/2013       | 17000    | В  | 1000    | <b>成性显示</b>       | 35,830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (100)0145H             | 1000                 |          |                                       | 6.5     |                 | 0.10     | 9.22          | -       | 0.10    |
| SPA-4               | J1R644 | 4/8/2013       | 2700     | JB | 1000    | 87 Mars 23,       | " (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | 347 63               | 1,177.20 | A CONTRACTOR OF THE                   | 3.7     | -               | 0.10     | 9.34          |         | 0.10    |
| SPA-6               | J1R646 | 4/8/2013       | 11000    | В  | 990     | <b>"就说</b> "      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                      | 100      |                                       | 3.3     | -               | 0.10     | 9.20          |         | 0.10    |
| SPA-7               | J1R647 | 4/8/2013       | 4900     | В  | 1000    | Cortino.          | 18. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                      |          |                                       | 3.2     |                 | 0.10     | 9.14          | -       | 0.10    |
| SPA-8               | JIRKM8 | 4/29/2013      | 11000    | В  | 970     | 1                 | \$ \ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                      |          | £ 64                                  | 1.5     |                 | 0.10     | 9.14          | -       | 0.10    |
| SPA-9               | JIRKM9 | 4/29/2013      | 9300     | В  | 980     | 31                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      | 2        | · · · · · · · · · · · · · · · · · · · | 1.6     | -               |          | 9.26          |         | 0.10    |
| SPA-10              | JIRKM6 | 4/29/2013      | 13000    | В  | 980     |                   | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                      |                      | 4        | ray sajis sirih                       | 1.5     | -               | 0.10     | 9.26          | -       | 0.10    |
| SPA-11              | JIRKM7 | 4/29/2013      | 6800     | В  | 990     | 7. 1 . a . 2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      |          |                                       | 1.4     | -               | -        | 8.97          | -       | 0.10    |
| SPA-12              | J1RKM5 | 4/29/2013      | 3800     | JB | 1000    |                   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                      | 1        |                                       | 1.5     | 9.00.000        | 0.10     | 8.30          |         | 0.10    |
| Split of J1R645     | J1R670 | 4/8/2013       | 42.0     |    |         | 660               | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 660                    |                      |          |                                       | 20      | 6.46            | 0.10     | 9.42          | -       | 0.10    |
| FS-1                | J1RJ78 | 3/15/2013      | 3000     | J  | 1000    | WEST OF           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a. Your                | 1                    | 3 14 A   | 2014                                  | 3.2     | -               | 0.10     | 9.42          | -       | 0.10    |
| FS-2                | J1PWC9 | 9/18/2012      | 24000    |    | 990     |                   | A COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SEE SEE                |                      | 1        |                                       | 1.1     | -               | 0.10     | 9.13          | +       | 0.1     |
| FS-3                | JIPWD0 | 9/18/2012      | 2300     | J  | 950     | and one           | 25365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                   | 3 20070002           | 0.00     | 19 (NO. 14)                           | 0.82    | -               | 0.10     | 8.82          |         | 0.1     |
|                     |        | 044040040      | 1000     | TT | 1000    | 300 16 4 33       | ALL REPORTS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE | Print, William St., or | 1 TAX 1 P20 C 19 YOU | 1.       | If Great in 1 The Part of             | (1 X)   | 1               | ( () (1) | 1 0.04        |         | 1 1/1.2 |

U

В

1000

960

3900

15000

9/18/2012

9/18/2012

9/18/2012

9/4/2012

5/29/2013

5/29/2013

5/29/2013

4/8/2013

JIPWDI

JIPWD2

J1PWD3

J1R160

JIRN38

JIRN39

JIRN40

J1R654

FS-4

FS-5

FS-6

FS-5 (100-D-77)

FS D-83:1-1

FS D-83:1-2

FS D-83:1-3

Equipment Blank

1000

940

930

1000

1. 36 E

0.24 0.10 Sheet No. 9 of 31 Attachment 07/08/13 N. K. Schiffern Date Originator J. D. Skoglie Date 07/08/13 Checked 0 0100D-CA-V0508 Rev. No. Calc. No.

6.34

9.03

10.5

9.45

8.65

9.36

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.82

2.0

0.50

6.3

4.1

4.1

5.9

0.100

0.100

0.100

0.100

0.100

0.100

| Attachment 1. 100                      | -D-77, 100-I | D-62, and 1 | 00-D-8 | 3:1 Waste | e Sites Veri | fication        | Sample l | Results (O | rganic | :s)  |       |        |      |
|----------------------------------------|--------------|-------------|--------|-----------|--------------|-----------------|----------|------------|--------|------|-------|--------|------|
|                                        |              |             | 83, EX |           | J1PW93       | , Dupli<br>PW83 | cate of  | J1PW       |        |      | J1PW  | 82, EX | C-2  |
| CONSTITUENT                            | CLASS        | 9/          | 18/201 | 2         |              | 18/2012         |          | 9/1        | 8/201  | 2    | 9/1   | 8/2012 | 2    |
|                                        |              | ug/kg       | Q      | PQL       | ug/kg        | Q               | PQL      | ug/kg      | Q      | PQL  | ug/kg | Q      | PQL  |
| Acenaphthene                           | PAH          | 190         | NXJ    | 10        | 100          | J               | 9.2      | 9.8        | UJ     | 9.8  | 10    | UJ     | 10   |
| Acenaphthylene                         | PAH          | 13          | JX     | 9.0       | 8.3          | U               | 8.3      | 8.8        | U      | 8.8  | 9.0   | U      | 9.0  |
| Anthracene                             | PAH          | 390         | N      | 3.0       | 2.8          | · U             | 2.8      | 3.0        | U      | 3.0  | 3.1   | U      | 3.1  |
| Benzo(a)anthracene                     | PAH          | 660         | NJ     | 3.2       | 160          | J               | 2.9      | 3.1        | UJ     | 3.1  | 4.9   | JX     | 3.2  |
| Benzo(a)pyrene                         | PAH          | . 440       | NJ     | 6.4       | - 80         | Ja              | 5.9      | 6.3        | UJ     | 6.3  | 7.2   | JX     | 6.4  |
| Benzo(b)fluoranthene                   | PAH          | 500         | N      | 4.2       | 120          |                 | 3.9      | 4.1        | U      | 4.1  | 11    | J      | 4.2  |
| Benzo(ghi)perylene                     | PAH          | 320         | N      | 7.2       | 65           |                 | 6.6      | 7.0        | Ū      | 7.0  | 7.2   | U      | 7.2  |
| Benzo(k)fluoranthene                   | PAH          | 180         | N      | 3.9       | 41           |                 | 3.6      | 3.9        | U      | 3.9  | 4.0_  | U      | 4.0  |
| Chrysene                               | PAH          | 560         | NJ     | 4.8       | 130          | J               | 4.4      | 4.7        | UJ     | 4.7  | 7.9   | JX     | 4.9  |
| Dibenz[a,h]anthracene                  | PAH          | 92          | X      | 11        | 15           | JX              | 10       | 11         | U      | 11   | 11    | U      | 11   |
| Fluoranthene                           | PAH          | 1200        | NJ     | 13        | 240          | J               | 12       | 13         | UJ     | 13   | 16    | J      | 13   |
| Fluorene                               | PAH          | 250         | T      | 5.3       | 71           |                 | 4.8      | 5.2        | U      | 5.2  | 5.3   | U      | 5.3  |
| Indeno(1,2,3-cd)pyrene                 | PAH          | 300         | N      | 12        | 43           | X               | 11       | 12         | U      | 12   | 12    | U      | 12   |
| Naphthalene                            | PAH          | 12          | U      | 12        | 11           | U               | 11       | 12         | U      | 12   | 12    | U      | 12   |
| Phenanthrene                           | PAH          | 1200        | NJ     | 12        | 260          | J               | 11       | 12         | UJ     | 12   | 12    | UJ     | 12   |
| Pyrene                                 | PAH          | 1300        | NJ     | 12        | 210          | J               | 11       | 12         | UJ     | 12   | 18    | J      | 12   |
| Aroclor-1016                           | PCB          | 2.6         | U      | 2.6       | 2.7          | U               | 2.7      | 2.7        | U      | 2.7  | 2.6   | U      | 2.6  |
| Aroclor-1010                           | PCB          | 7.6         | U      | 7.6       | 7.8          | U               | 7.8      | 7.7        | U      | 7.7  | 7.5   | U      | 7.5  |
| Aroclor-1221<br>Aroclor-1232           | PCB          | 1.9         | U      | 1.9       | 1.9          | U               | 1.9      | 1.9        | U      | 1.9  | 1.9   | U      | 1.9  |
| Aroclor-1232<br>Aroclor-1242           | PCB          | 4.4         | U      | 4.4       | 4.5          | U               | 4.5      | 4.5        | U      | 4.5  | 4.3   | U      | 4.3  |
| Aroclor-1242 Aroclor-1248              | PCB          | 4.4         | Ū      | 4.4       | 4.5          | U               | 4.5      | 4.5        | U      | 4.5  | 4.3   | U      | 4.3  |
| Aroclor-1254                           | PCB          | 2.4         | U      | 2.4       | 2.5          | U               | 2.5      | 2.5        | U      | 2.5  | 2.4   | Ü      | 2.4  |
| Aroclor-1254 Aroclor-1260              | PCB          | 2.4         | Ū      | 2.4       | 2.5          | U               | 2.5      | 5.4        | J      | 2.5  | 2.4   | U      | 2.4  |
| Aldrin                                 | PEST         | 0.23        | U      | 0.23      | 0.23         | U               | 0.23     | 0.24       | U      | 0.24 | 0.24  | U      | 0.24 |
| Alpha-BHC                              | PEST         | 0.20        | U      | 0.20      | 0.20         | U               | 0.20     | 0.21       | U      | 0.21 | 0.21  | U      | 0.21 |
| alpha-Chiordane                        | PEST         | 0.30        | U      | 0.30      | 0.30         | U               | 0.30     | 0.31       | U      | 0.31 | 0.31  | U      | 0.31 |
| beta-1.2,3,4,5,6-Hexachlorocyclohexane | PEST         | 0.62        | U      | 0.62      | 0.61         | U               | 0.61     | 0.64       | U      | 0.64 | 0.64  | U      | 0.64 |
| Delta-BHC                              | PEST         | 0.37        | U      | 0.37      | 0.37         | U               | 0.37     | 0.39       | υ      | 0.39 | 0.39  | U      | 0.39 |
| Dichlorodiphenyldichloroethane         | PEST         | 0.51        | U      | 0.51      | 0.51         | Ū               | 0.51     | 0.53       | U      | 0.53 | 0.53  | U      | 0.53 |
| Dichlorodiphenyldichloroethylene       | PEST         | 0.22        | U      | 0.22      | 0.22         | U               | 0.22     | 0.23       | U      | 0.23 | 0.23  | U      | 0.23 |
| Dichlorodiphenyltrichloroethane        | PEST         | 0.55        | U      | 0.55      | 0.55         | U               | 0.55     | 0.57       | U      | 0.57 | 0.57  | U      | 0.57 |
| Diellorion                             | PEST         | 0.20        | U      | 0.20      | 0.19         | U               | 0.19     | 0.20       | U      | 0.20 | 0.20  | U      | 0.20 |
| Endosulfan I                           | PEST         | 0.16        | Ū      | 0.16      | 0.16         | U               | 0.16     | 0.17       | U      | 0.17 | 0.17  | U      | 0.17 |
| Endosulfan II                          | PEST         | 0.27        | U      | 0.27      | 0.27         | U               | 0.27     | 0.28       | U      | 0.28 | 0.28  | U      | 0.28 |
| Endosulfan sulfate                     | PEST         | 0.26        | U      | 0.26      | 0.26         | U               | 0.26     | 0.27       | U      | 0.27 | 0.27  | U.     | 0.27 |
| Endrin                                 | PEST         | 0.29        | U      | 0.29      | 0.28         | U               | 0.28     | 0.30       | U      | 0.30 | 0.30  | U      | 0.30 |
| Endrin aldehyde                        | PEST         | 0.16        | U      | 0.16      | 0.16         | U               | 0.16     | 0.17       | U      | 0.17 | 0.17  |        | 0.17 |
| Endrin aldenyde  Endrin ketone         | PEST         | 0.46        | U      | 0.46      | 0.45         | U               | 0.45     | 0.47       | U      | 0.47 | 0.47  | U      | 0.47 |
| Gamma-BHC (Lindane)                    | PEST         | 0.43        | U      | 0.43      | 0.43         | U               | 0.43     | 0.45       | U      | 0.45 | 0.45  | U      | 0.45 |
| gamma-Chlordane                        | PEST         | 0.25        | U      | 0.25      | 0.25         | U               | 0.25     | 0.26       | U      | 0.26 | 0.26  | U      | 0.26 |
| Heptachlor                             | PEST         | 0.20        | Ťΰ     | 0.20      | 0.20         | U               | 0.20     | 0.21       | U      | 0.21 | 0.21  | U      | 0.21 |
| Heptachlor epoxide                     | PEST         | 0.40        | U      | 0.40      | 0.39         | U               | 0.39     | 0.41       | U      | 0.41 | 0.41  | U      | 0.41 |
| Methoxychlor                           | PEST         | 0.42        | Ū      | 0.42      | 0.42         | U               | 0.42     | 0.44       | U      | 0.44 | 0.44  | U      | 0.44 |
| Toxaphene                              | PEST         | 15          | UJ UJ  | 15        | 15           | UJ              | 15       | 15         | UJ     | 15   | 15    | UJ     | 15   |

| Attachment | 1               | Sheet No. |
|------------|-----------------|-----------|
| Originator | N. K. Schiffern | Date      |
| Checked    | J. D. Skoglie   | Date      |
| Calc. No.  | 0100D-CA-V0508  | Rev. No.  |

| Sheet No. | 10 of 31 |
|-----------|----------|
| Date      | 07/08/13 |
| Date      | 07/08/13 |
| Rev. No.  | 0        |

J1PW87, EXC-7

J1PW86, EXC-6

Attachment 1. 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Verification Sample Results (Organics).

J1PW85, EXC-5

J1RJ77, EXC-4

CONSTITUENT

Delta-BHC

Dichlorodiphenyldichloroethane

Dichlorodiphenyldichloroethylene

Dichlorodiphenyltrichloroethane

Dieldrin

Endosulfan I

Endosulfan II

Endosulfan sulfate

Endrin

Endrin aldehyde

Endrin ketone

Gamma-BHC (Lindane)

gamma-Chlordane

Heptachlor

Heptachlor epoxide

Methoxychlor

Toxaphene

| CONSTITUENT                            | CLASS | 3/    | 3/15/2013 |      |       | /18/2012 | 2    | 9/    | 18/201 | 2    | 9/18/2012 |     |       |
|----------------------------------------|-------|-------|-----------|------|-------|----------|------|-------|--------|------|-----------|-----|-------|
|                                        |       | ug/kg | О         | PQL  | ug/kg | Q        | PQL  | ug/kg | Q      | PQL  | ug/kg     | □Q. | PQL   |
| Acenaphthene                           | PAH   | 10    | Ū         | 10   | 10    | UJ       | 10   | 10    | UJ     | 10   | 9.7       | UJ  | 9.7   |
| Acenaphthylene                         | PAH   | 9.2   | U         | 9.2  | 9.0   | U        | 9.0  | 9.0   | U      | 9.0  | 8.7       | U   | 8.7   |
| Anthracene                             | PAH   | 7.5   | J         | 3.1  | 22    |          | 3.1  | 3.1   | U      | 3.1  | 3.0       | U   | 3.0   |
| Benzo(a)anthracene                     | PAH   | 26    |           | 3.3  | 58    | J        | 3.2  | 3.2   | UJ     | 3.2  | 3.1       | UJ  | 3.1   |
| Benzo(a)pyrene                         | PAH   | 23    |           | 6.6  | 6.4   | UJ       | 6.4  | 6.4   | UJ     | 6.4  | 6.2       | UJ  | 6.2   |
| Benzo(b)fluoranthene                   | PAH   | 25    |           | 4.3  | 51    |          | 4.2  | 4.2   | U      | 4.2  | 4.1       | U   | 4:1   |
| Benzo(ghi)perylene                     | PAH   | 11    | JX        | 7.4  | 45    | Х        | 7.2  | 7.2   | U      | 7.2  | 7.0       | U   | 7.0   |
| Benzo(k)fluoranthene                   | PAH   | 9.1   | J         | 4.0  | 17    |          | 3.9  | 3.9   | U      | 3.9  | 3.8       | U   | 3.8   |
| Chrysene                               | PAH   | 23    | J         | 5.0  | 49    | J        | 4.8  | 4.9   | IJ     | 4.9  | 4.7       | UJ  | 4.7   |
| Dibenz[a,h]anthracene                  | PAH   | 11    | U         | 11   | 11    | U        | 11   | 11    | U      | 11   | 11        | U   | 11    |
| Fluoranthene                           | PAH   | 57    |           | 13   | 99    | J        | 13   | 13    | UJ     | 13   | 13        | UJ  | 13    |
| Fluorene                               | PAH   | 5.4   | U         | 5.4  | 13    | J        | 5.3  | 5.3   | U      | 5.3  | 5.1       | U   | 5.1   |
| Indeno(1,2,3-cd)pyrene                 | PAH   | 15    | 1         | 12   | 31    | ,        | 12   | 12    | U      | 12   | 12        | U_  | 12    |
| Naphthalene                            | PAH   | 12    | U         | 12   | 12    | U        | 12   | 12    | U      | 12   | 12        | U   | 12    |
| Phenanthrene                           | PAH   | 24    | J         | 12   | 51    | J        | 12   | 12    | UJ     | 12   | 12        | UJ  | 12    |
| Pyrene                                 | PAH   | 61    |           | 12   | 110   | J        | 12   | 12    | UJ     | 12   | 12        | UJ  | 12    |
| Aroclor-1016                           | PCB   | 2.9   | U         | 2.9  | 2.7   | U        | 2.7  | 2.7   | U      | 2.7  | 2.8       | U   | 2.8   |
| Aroclor-1221                           | PCB   | 8.3   | U         | 8.3  | 7.9   | U        | 7.9  | 7.7   | U      | 7.7  | 8.0       | U   | 8.0   |
| Aroclor-1232                           | PCB   | 2.1   | U         | 2.1  | 2.0   | Ü        | 2.0  | 1.9   | U      | 1.9  | 2.0       | U   | 2.0   |
| Aroclor-1242                           | PCB   | 4.8   | U         | 4.8  | 4.6   | U        | 4.6  | 4.5   | U      | 4.5  | 4.7_      | U   | 4.7   |
| Aroclor-1248                           | PCB   | 4.8   | U         | 4.8  | 4.6   | U        | 4.6  | 4.5   | U      | 4.5  | 4.7       | U   | 4.7   |
| Aroclor-1254                           | PCB   | 2.7   | U         | 2.7  | 2.6   | U        | 2.6  | 2.5   | U      | 2.5  | 2.6       | U   | 2.6   |
| Aroclor-1260                           | PCB   | 2.7   | U _       | 2.7  | 7.5   | JP       | 2.6  | 2.5   | ַ ט    | 2.5  | 2.6       | U   | 2.6   |
| Aldrin                                 | PEST  | 0.25  | U         | 0.25 | 0.25  | U        | 0.25 | 0.25  | U      | 0.25 | 0.24      | U   | 0.24  |
| Alpha-BHC                              | PEST  | 0.21  | U         | 0.21 | 0.21  | U        | 0.21 | 0.22  | U      | 0.22 | 0.21      | U   | 0.21  |
| alpha-Chlordane                        | PEST  | 0.32  | U         | 0.32 | 0.32  | U        | 0.32 | 0.33  | U      | 0.33 | 0.31      | U   | 0.31  |
| beta-1,2,3,4.5,6-Hexachlorocyclohexane | PEST  | 0.66  | UN        | 0.66 | 0.65  | U        | 0.65 | 0.67  | U      | 0.67 | 0.64      | U   | 0.64  |
|                                        | T     |       | 1         |      |       |          |      |       |        | 4.4  |           | X 7 | 7 000 |

0.40

0.54

0.24

0.59

0.21

0.18

0.29

0.28

0.31

0.17

0.49

0.46

0.27

0.21

0.42

0.45

16

U

U

U

U

U

U

·IJ

UN

U

U

U

Ų

U

U

U

U

U

0.39

0.54

0.23

0.58

0.21

0.17

0.28

0.27

0.30

0.17

0.48

0.46

0.26

0.21

0.42

0.44

16

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

UJ

0.39

0.54

0.23

0.58

0.21

0.17

0.28

0.27

0.30

0.17

0.48

0.46

0.26

0.21

0.42

0.44

16

0.40

0.55

0.24

0.60

0.21

0.18

0.29

0.28

0.31

0.17

0.49

0.47

0.27

0.22

0.43

0.45

16

U 0.40

U 0.55

U

U 0.60

U

U

U

U

U 0.31

U 0.17

U

U

ŭ

U 0.22

υ

U

UJ

0.24

0.21

0.18

0.29

0.28

0.49

0.47

0.27

0.43

0.45

16

0.39

0.53

0.23

0.57

0.20

0.17

0.28

0.27

0.29

0.16

0.47

0.45

0.26

0.21

0.41

0.43

15

U 0.39

U

U

U

U

U

U

U

U

U

Ü

U

U

U

U

0.53

0.23

0.57

0.20

0.17

0.28 0.27

0.29

0.16

0.47

0.45

0.26

0.21

0.41

0.43

0.40

0.54

0.24

0.59

0.21

0.18

0.29

0.28

0.31

0.17

0.49

0.46

0.27

0.21

0.42

0.45

16

PEST

PEST

PEST

PEST

PEST

PEST

PEST

PEST

PEST

PEST

PEST

PEST

PEST

PEST

PEST

PEST

PEST

| Attachment | 1               | Sheet No. | 11 of 31 |
|------------|-----------------|-----------|----------|
| Originator | N. K. Schiffern | Date      | 07/08/13 |
| Checked    | J. D. Skoglie   | Date      | 07/08/13 |
| Calc. No.  | 0100D-CA-V0508  | Rev. No.  | 0        |

Attachment 1, 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Verification Sample Results (Organics).

| Attachment 1. 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Verification Sample Results (Organics). |       |           |               |      |           |         |      |       |                |       |                |     |      |  |
|------------------------------------------------------------------------------------------------------|-------|-----------|---------------|------|-----------|---------|------|-------|----------------|-------|----------------|-----|------|--|
| GONGENERAL TOP III                                                                                   | CLACC | ļ         | J1PW88, EXC-8 |      |           | V89, EX |      | J1PW  |                |       | J1PW91, EXC-11 |     |      |  |
| CONSTITUENT                                                                                          | CLASS | 9/18/2012 |               |      | 9/18/2012 |         |      | 9/    | 18/2 <u>01</u> |       | 9/18/2012      |     |      |  |
|                                                                                                      |       | ug/kg     | Q             | PQL  | ug/kg     | Q       | PQL  | ug/kg | Q              | PQL   | ug/kg          | Q   | PQL  |  |
| Acenaphthene                                                                                         | PAH   | 9.8       | UJ            | 9.8  | 10        | UJ      | 10   | 10    | UJ             | 10    | 9.4            | UJ  | 9.4  |  |
| Acenaphthylene                                                                                       | PAH   | 8.8       | U_            | 8.8  | 9.0       | U       | 9.0  | 9.0   | U              | 9.0   | 8.4            | _ U | 8.4  |  |
| Anthracene                                                                                           | PAH   | 3.0       | U             | 3.0  | 3.0       | U       | 3.0  | 3.0   | U              | 3,0   | 2.9            | U   | 2.9  |  |
| Benzo(a)anthracene                                                                                   | PAH   | 3.1       | UJ            | 3.1  | 3.2       | បរ      | 3.2  | 3.2   | UJ             | 3.2   | 3.0            | UJ  | 3.0  |  |
| Benzo(a)pyrene                                                                                       | PAH   | 6.3       | IJ            | 6.3  | 6.4       | UJ      | 6.4  | 6.4   | UJ             | 6.4   | 6.0            | UJ  | 6.0  |  |
| Benzo(b)fluoranthene                                                                                 | PAH   | 4.1       | U             | 4.1  | 6.7       | JX      | 4.2  | 4,2   | U              | 4.2   | 3.9            | U   | 3.9  |  |
| Benzo(ghi)perylene                                                                                   | PAH   | 7.0       | U             | 7.0  | 7.2       | Ü       | 7.2  | 7.2   | U              | 7.2   | 6.7            | U   | 6.7  |  |
| Benzo(k)fluoranthene                                                                                 | PAH   | 3.9       | U             | 3.9  | 3.9       | Ŭ       | 3.9  | 3.9   | U              | 3.9   | 3.7            | U   | 3.7  |  |
| Chrysene                                                                                             | PAH   | 4.7       | UJ            | 4.7  | 9.8       | JX      | 4.8  | 4.8   | UJ             | 4.8   | 4.5            | UJ  | 4.5  |  |
| Dibenz[a,h]anthracene                                                                                | PAH   | 11        | U             | 11   | 11        | U       | 11   | 11    | U              | 11    | 10             | U   | 10   |  |
| Fluoranthene                                                                                         | PAH   | 13        | UJ            | 13   | 15        | J       | 13   | 13    | UJ             | 13    | 12             | UJ  | 12   |  |
| Fluorene                                                                                             | PAH   | 5.2       | U             | 5.2  | 5.3       | U       | 5.3  | 5.3   | U              | 5.3   | 4.9            | U   | 4.9  |  |
| Indeno(1,2,3-cd)pyrene                                                                               | PAH   | 12        | U             | 12   | 12        | U       | 12   | 12    | U              | 12    | 11             | U   | 11   |  |
| Naphthalene                                                                                          | PAH   | 12        | U             | 12   | 12        | U       | 12   | 12    | U              | 12    | 11             | U   | 11   |  |
| Phenanthrene                                                                                         | PAH   | 12        | UJ            | 12   | 12        | UJ      | 12   | 12    | UJ             | 12    | 11             | UJ  | 11   |  |
| Pyrene                                                                                               | PAH   | 12        | UJ            | 12   | 19        | J       | 12   | 12    | UJ             | 12    | 11             | UJ  | 11   |  |
| Aroclor-1016                                                                                         | PCB   | 2.7       | U             | 2.7  | 2.7       | U       | 2.7  | 2.6   | U              | 2.6   | 2.8            | U   | 2.8  |  |
| Aroclor-1221                                                                                         | PCB   | 7.9       | U             | 7.9  | 7.7       | U       | 7.7  | 7.5   | U              | 7.5   | 8.1            | U   | 8.1  |  |
| Aroclor-1232                                                                                         | PCB   | 2.0       | U             | 2.0  | 1.9       | U       | 1.9  | 1.9   | บ              | 1.9   | 2.0            | U   | 2.0  |  |
| Aroclor-1242                                                                                         | PCB   | 4.6       | U             | 4.6  | 4.5       | U       | 4.5  | 4.4   | U              | 4.4   | 4.7            | U   | 4.7  |  |
| Arocior-1248                                                                                         | PCB   | 4.6       | υ             | 4.6  | 4.5       | U       | 4.5  | 4.4   | U              | 4.4   | 4.7            | U   | 4.7  |  |
| Aroclor-1254                                                                                         | PCB   | 2.6       | U             | 2.6  | 2.5       | U       | 2.5  | 2.4   | U              | 2.4   | 2.6            | U   | 2.6  |  |
| Aroclor-1260                                                                                         | PCB   | 2.6       | U             | 2.6  | 2.5       | U       | 2.5  | 2.4   | U              | 2.4   | 2.6            | U   | 2.6  |  |
| Aldrin                                                                                               | PEST  | 0.24      | U             | 0.24 | 0.24      | U       | 0.24 | 0.24  | U              | 0.24  | 0.23           | U   | 0.23 |  |
| Alpha-BHC                                                                                            | PEST  | 0.20      | U             | 0.20 | 0.21      | U       | 0.21 | 0.21  | U              | 0.21  | 0.20           | U   | 0.20 |  |
| alpha-Chlordane                                                                                      | PEST  | 0.31      | U             | 0.31 | 0.31      | U       | 0.31 | 0.31  | U              | 0.31  | 0.30           | U   | 0.30 |  |
| beta-1,2,3,4,5,6-Hexachlorocyclohexane                                                               | PEST  | 0.63      | U             | 0.63 | 0.65      | U       | 0.65 | 0.64  | U              | 0.64  | 0.62           | U   | 0.62 |  |
| Delta-BHC                                                                                            | PEST  | 0.38      | U             | 0.38 | 0.39      | U       | 0.39 | 0.39  | U              | 0.39  | 0.37           | U   | 0.37 |  |
| Dichlorodiphenyldichloroethane                                                                       | PEST  | 0.52      | U             | 0.52 | 0.53      | U       | 0.53 | 0.53  | U              | 0.53  | 0.51           | U   | 0.51 |  |
| Dichlorodiphenyldichloroethylene                                                                     | PEST  | 0.23      | U             | 0.23 | 0.23      | U       | 0.23 | 0.23  | U              | 0.23  | 0.22           | U   | 0.22 |  |
| Dichlorodiphenyltrichloroethane                                                                      | PEST  | 0.56      | U             | 0.56 | 0.57      | U       | 0.57 | 0.57  | U              | 0.57  | 0.55           | υ   | 0.55 |  |
| Dieldrin                                                                                             | PEST  | 0.20      | U             | 0.20 | 0.20      | U       | 0.20 | 0.20  | U              | 0.20  | 0.19           | U   | 0.19 |  |
| Endosulfan I                                                                                         | PEST  | 0.17      | U             | 0.17 | 0.17      | U       | 0.17 | 0.17  | U              | 0.17  | 0.16           | U   | 0.16 |  |
| Endosulfan II                                                                                        | PEST  | 0.27      | U             | 0.27 | 0.28      | U       | 0.28 | 0.28  | U              | 0.28  | 0.27           | U   | 0.27 |  |
| Endosulfan sulfate                                                                                   | PEST  | 0.26      | U             | 0.26 | 0.27      | U       | 0.27 | 0.27  | U              | 0.27  | 0.26           | U   | 0.26 |  |
| Endrin                                                                                               | PEST  | 0.29      | U             | 0.29 | 0.30      | U       | 0.30 | 0.29  | U              | 0.29  | 0.28           | U   | 0.28 |  |
| Endrin aldehyde                                                                                      | PEST  | 0.16      | U             | 0.16 | 0.17      | U       | 0.17 | 0.16  | U              | 0.16  | 0.16           | U   | 0.16 |  |
| Endrin ketone                                                                                        | PEST  | 0.47      | U             | 0.47 | 0.48      | U       | 0.48 | 0.47  | U              | 0.47  | 0.45           | U   | 0.45 |  |
| Gamma-BHC (Lindane)                                                                                  | PEST  | 0.44      | υ             | 0.44 | 0.45      | U       | 0.45 | 0.45  | U              | 0.45  | 0.43           | U   | 0.43 |  |
| gamma-Chlordane                                                                                      | PEST  | 0.25      | U             | 0.25 | 0.26      | U       | 0.26 | 0.26  | Ŭ              | 0.26  | 0.25           | U   | 0.25 |  |
| Heptachlor                                                                                           | PEST  | 0.20      | U             | 0.20 | 0.21      | U       | 0.21 | 0.21  | υ              | 0.21_ | 0.20           | Ü   | 0.20 |  |
| Heptachlor epoxide                                                                                   | PEST  | 0.41      | U             | 0.41 | 0.41      | U       | 0.41 | 0.41  | U              | 0.41  | 0.39           | U   | 0.39 |  |
| Methoxychlor                                                                                         | PEST  | 0.43      | Ŭ             | 0.43 | 0.44      | U       | 0.44 | 0.43  | U              | 0.43  | 0.42           | U   | 0.42 |  |
| Toxaphene                                                                                            | PEST  | 15        | UJ            | 15   | 15        | UJ      | 15   | 15    | UJ             | 15    | 15             | UJ  | 15   |  |

| Attachment | _1              |
|------------|-----------------|
| Originator | N. K. Schiffern |
| Checked    | J. D. Skoglie   |
| Calc. No.  | 0100D-CA-V0508  |

| Sheet No. | 12 of 31 |
|-----------|----------|
| Date      | 07/08/13 |
| Date      | 07/08/13 |
| Rev. No.  | 0        |

| Attachment 1. 1                        | CLASS |           | 92, EX |      | J1PWF8,   |    |      | J1Re                                  | 645, SI | PA-5   | JIR653, Duplicate of<br>J1R645 |      |     |
|----------------------------------------|-------|-----------|--------|------|-----------|----|------|---------------------------------------|---------|--------|--------------------------------|------|-----|
| CONSTITUENT                            | CLASS | 9/18/2012 |        |      | 9/18/2012 |    |      | 4/8/2013                              |         |        | 4/8/2013                       |      |     |
|                                        |       | ug/kg     | Q      | PQL  | ug/kg     | Q  | PQL  | ug/kg                                 | Q       | PQL    | ug/kg                          | Q    | PQI |
| Acenaphthene                           | PAH   | 9.4       | UJ     | 9.4  | 1530      | D  | 13   | 9.7                                   | U       | 9.7    | 9.7                            | IJ   | 9.7 |
| Acenaphthylene                         | PAH   | 8.4       | U      | 8.4  | 257       | D  | 13   | 8.7                                   | U       | 8.7    | 8.7                            | U    | 8.7 |
| Anthracene                             | PAH   | 2.9       | U      | 2.9  | 348       | D  | 13   | 2.9                                   | U       | 2.9    | 3.0                            | U    | 3.0 |
| Benzo(a)anthracene                     | PAH   | 3.0       | UJ     | 3.0  | 503       | D  | 13   | 3.1                                   | U       | 3.1    | 3.1                            | U    | 3.  |
| Benzo(a)pyrene                         | PAH   | 6.0       | UJ     | 6.0  | 493       | D  | 13   | 6.2                                   | U       | 6.2    | 6.2                            | U    | 6.  |
| Benzo(b)fluoranthene                   | PAH   | 3.9       | U      | 3.9  | 257       | D  | 13   | 4.1                                   | U       | 4.1    | 4.1                            | U    | 4.  |
| Benzo(ghi)perylene                     | PAH   | 6.8       | U      | 6.8  | 508       | D  | 13   | 7.0                                   | U       | 7.0    | 7.0                            | U    | 7.  |
| Benzo(k)fluoranthene                   | PAH   | 3.7       | U      | 3.7  | 155       | D  | 13   | 3.8                                   | U       | 3.8    | 3.8                            | U    | 3.  |
| Chrysene                               | PAH   | 4.5       | UJ     | 4.5  | 631       | D  | 13   | 4.7                                   | U       | 4.7    | 4.7                            | U    | 4.  |
| Dibenz[a,h]anthracene                  | PAH   | 10        | U      | 10   | 37.1      | D  | 13   | 11                                    | U       | 11     | 11                             | U    | 1   |
| Fluoranthene                           | PAH   | 12        | UJ     | 12   | 1260      | D  | 13   | 13                                    | U       | 13     | 13                             | U    | 13  |
| Fluorene                               | PAH   | 5.0       | U      | 5.0  | 201       | D  | 13   | 5.1                                   | U       | 5.1    | 5.1                            | U    | 5.  |
| Indeno(1,2,3-cd)pyrene                 | PAH   | 11        | U      | 11   | 199       | D  | 13   | 12                                    | U       | 12     | 12                             | U    | 1:  |
| Naphthalene                            | PAH   | 11        | U      | 11   | 1890      | D  | 13   | 12                                    | U       | 12     | 12                             | U    | 1:  |
| Phenanthrene                           | PAH   | 11        | UJ     | 11   | 1200      | D  | 13   | 12                                    | U       | 12     | 12                             | U    | 1:  |
| Pyrene                                 | PAH   | 11        | UJ     | 11   | 909       | D  | 13   | 12                                    | U       | 12     | 12                             | U    | 1   |
| Aroclor-1016                           | PCB   | 2.7       | U      | 2.7  | 13.4      | U  | 13.4 | 2.8                                   | U       | 2.8    | 2.8                            | U    | 2,  |
| Aroclor-1221                           | PCB   | 7.9       | U      | 7.9  | 13.4      | Ų  | 13.4 | 8.1                                   | U       | 8.1    | 8.0                            | U    | 8.  |
| Aroclor-1232                           | PCB   | 2.0       | U      | 2.0  | 13.4      | U  | 13.4 | 2.0                                   | U       | 2.0    | 2.0                            | U    | 2.  |
| Aroclor-1242                           | PCB   | 4.6       | U      | 4.6  | 13.4      | U  | 13.4 | 4.7                                   | U       | 4.7    | 4.7                            | U    | 4.  |
| Aroclor-1248                           | PCB   | 4.6       | U      | 4.6  | 13.4      | U  | 13.4 | 4.7                                   | U       | 4.7    | 4.7                            | U    | 4.  |
| Aroclor-1254                           | PCB   | 2.6       | U      | 2.6  | 13.4      | U  | 13.4 | 2.6                                   | U       | 2.6    | 2.6                            | U    | 2.  |
| Aroclor-1260                           | PCB   | 2.6       | U      | 2.6  | 13.4      | U  | 13.4 | 2.6                                   | U       | 2.6    | 2.6                            | U    | 2.  |
| Aroclor-1262                           | PCB   |           |        |      | 13.4      | U  | 13.4 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 100     | 12303  | BUT AND S                      | 1188 |     |
| Aroclor-1268                           | PCB   |           | 94. ±  |      | 13.4      | U  | 13.4 |                                       | 13.5    | 554/65 | <b>新华文意</b>                    |      | 1   |
| Aldrin                                 | PEST  | 0.24      | U      | 0.24 | 1.33      | UD | 1.33 | 0.24                                  | U       | 0.24   | 0.24                           | U    | 0.3 |
| Alpha-BHC                              | PEST  | 0.20      | U      | 0.20 | 1.33      | UD | 1.33 | 0.21                                  | U       | 0.21   | 0.21                           | U    | 0.3 |
| alpha-Chlordane                        | PEST  | 0.31      | U      | 0.31 | 1.33      | UD | 1.33 | 0.31                                  | U       | 0.31   | 0.31                           | U    | 0.3 |
| beta-1.2.3,4,5,6-Hexachlorocyclohexane | PEST  | 0.63      | U      | 0.63 | 1.33      | UD | 1.33 | 0.65                                  | U       | 0.65   | 0.64                           | U    | 0.0 |
| Delta-BHC                              | PEST  | 0.38      | U      | 0.38 | 1.33      | UD | 1.33 | 0.39                                  | U       | 0.39   | 0.39                           | U    | 0.: |
| Dichlorodiphenyldichloroethane         | PEST  | 0.52      | U      | 0.52 | 1.33      | UD | 1.33 | 0.53                                  | U       | 0.53   | 0.53                           | U    | 0.3 |
| Dichlorodiphenyldichloroethylene       | PEST  | 0.23      | U      | 0.23 | 1.33      | UD | 1.33 | 0.23                                  | U       | 0.23   | 0.23                           | U    | 0.: |
| Dichlorodiphenyltrichloroethane        | PEST  | 0.56      | U      | 0.56 | 1.33      | UD | 1.33 | 0.57                                  | U       | 0.57   | 0.57                           | U    | 0   |
| Dieldrin                               | PEST  | 0.20      | U      | 0.20 | 1.33      | UD | 1.33 | 0.20                                  | U       | 0.20   | 0.20                           | U    | 0.: |
| Endosulfan I                           | PEST  | 0.17      | U      | 0.17 | 1.33      | UD | 1.33 | 0.17                                  | U       | 0.17   | 0.17                           | U    | 0.  |
| Endosulfan II                          | PEST  | 0.27      | U      | 0.27 | 1.33      | UD | 1.33 | 0.28                                  | U       | 0.28   | 0.28                           | U    | 0.3 |
| Endosulfan sulfate                     | PEST  | 0.26      | U      | 0.26 | 1.33      | UD | 1.33 | 0.27                                  | U       | 0.27   | 0.27                           | U    | 0.3 |
| Endrin                                 | PEST  | 0.29      | U      | 0.29 | 1.33      | UD | 1.33 | 0.30                                  | U       | 0.30   | 0.30                           | U    | 0.  |
| Endrin aldehyde                        | PEST  | 0.16      | U      | 0.16 | 1.33      | UD | 1.33 | 0.17                                  | U       | 0.17   | 0.17                           | U    | 0.  |
| Endrin ketone                          | PEST  | 0.47      | U      | 0.47 | 1.33      | UD | 1.33 | 0.48                                  | U       | 0.48   | 0.47                           | U    | 0.4 |
| Gamma-BHC (Lindane)                    | PEST  | 0.44      | U      | 0.44 | 1.33      | UD | 1.33 | 0.45                                  | U       | 0.45   | 0.45                           | U    | 0.  |
| gamma-Chlordane                        | PEST  | 0.25      | U      | 0.25 | 1.33      | UD | 1.33 | 0.26                                  | U       | 0.26   | 0.26                           | U    | 0.  |
| Heptachlor                             | PEST  | 0.20      | U      | 0.20 | 1.33      | UD | 1.33 | 0.21                                  | U       | 0.21   | 0.21                           | U    | 0.  |
| Heptachlor epoxide                     | PEST  | 0.41      | U      | 0.41 | 1.33      | UD | 1.33 | 0.42                                  | U       | 0.42   | 0.41                           | U    | 0.  |
| Methoxychlor                           | PEST  | 0.43      | U      | 0.41 | 1.33      | UD | 1.33 | 0.44                                  | U       | 0.44   | 0.44                           | U    | 0.4 |
| Toxaphene                              | PEST  | 15        | UJ     | 15   | 13.3      | UD | 13.3 | 15                                    | U       | 15     | 15                             | U    | 1   |

| Attachment | 1               |
|------------|-----------------|
| Originator | N. K. Schiffern |
| Checked    | J. D. Skoglie   |
| Calc No    | 0100D-CA-V0508  |

| Sheet No. | 13 of 31 |
|-----------|----------|
| Date      | 07/08/13 |
| Date      | 07/08/13 |
| Rev. No.  | 0        |

| Attachment 1. 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Verification Sample Results (Organics). |       |                |               |      |       |          |      |       |        |                |               |    |      |  |
|------------------------------------------------------------------------------------------------------|-------|----------------|---------------|------|-------|----------|------|-------|--------|----------------|---------------|----|------|--|
|                                                                                                      |       | J1R6           | J1R641, SPA-1 |      |       | 42, SP   | A-2  |       | 43, SP |                | J1R644, SPA-4 |    |      |  |
| CONSTITUENT                                                                                          | CLASS | 4/8/2013 14:35 |               |      | 4/8/2 | 2013 14: | 20   | 4/8/2 |        | 4/8/2013 14:40 |               |    |      |  |
|                                                                                                      | 1     | ug/kg          | Q             | PQL  | ug/kg | Q        | PQL  | ug/kg | Q      | PQL            | ug/kg         | Q  | PQL  |  |
| Acenaphthene                                                                                         | PAH   | 10             | U             | 10   | 10    | U        | 10   | 10    | Ŭ      | 10             | 9.7           | U  | 9.7  |  |
| Acenaphthylene                                                                                       | PAH   | 9.0            | บ             | 9.0  | 9.2   | U        | 9.2  | 9.4   | U      | 9.4            | 8.7           | U  | 8.7  |  |
| Anthracene                                                                                           | PAH   | 3.0            | U             | 3.0  | 3.1   | U        | 3.1  | 3.2   | U      | 3.2            | 2.9           | U  | 2.9  |  |
| Benzo(a)anthracene                                                                                   | PAH   | 3.2            | U             | 3.2  | 17    | Х        | 3.3  | 6.7   | J      | 3.3            | 3.1           | U  | 3.1  |  |
| Benzo(a)pyrene                                                                                       | PAH   | 6.4            | U             | 6.4  | 23    |          | 6.6  | 6.7   | U      | 6.7            | 6.2           | U  | 6.2  |  |
| Benzo(b)fluoranthene                                                                                 | PAH   | 4.2            | U             | 4.2  | 29    | X        | 4.3  | 4.8   | J      | 4.4            | 4.1           | U  | 4.1  |  |
| Benzo(ghi)perylene                                                                                   | PAH   | 7.2            | U             | 7.2  | 15    | JX       | 7.4_ | 7.5   | U      | 7.5            | 7.0           | U  | 7.0  |  |
| Benzo(k)fluoranthene                                                                                 | PAH   | 3.9            | U             | 3.9  | 8.6   | J        | 4.0  | 4.1   | U      | 4.1            | 3.8           | U  | 3.8  |  |
| Chrysene                                                                                             | PAH   | 4.8            | U             | 4.8  | 20    | J        | 4.9  | 8.3   | J      | 5.1            | 4.7           | Ŭ  | 4.7  |  |
| Dibenz[a,h]anthracene                                                                                | PAH   | 11             | U             | 11   | 11    | U        | 11   | 11    | U      | 11             | 11            | U  | 11_  |  |
| Fluoranthene                                                                                         | PAH   | 13             | U             | 13   | 39    | J        | 13   | 14    | U      | 14             | 13            | U  | 13   |  |
| Fluorene                                                                                             | PAH   | 5.3            | U             | 5.3  | 5.4   | U        | 5.4  | 5.5   | U      | 5.5            | 5.1           | U  | 5.1  |  |
| Indeno(1,2,3-cd)pyrene                                                                               | PAH   | 12             | U             | 12   | 21    | J        | 12 _ | 13    | Ŭ      | 13             | 12            | U  | 12   |  |
| Naphthalene                                                                                          | PAH   | 12             | U             | 12   | 12    | U        | 12   | 13    | U      | 13             | 12            | U  | 12   |  |
| Phenanthrene                                                                                         | PAH   | 12             | U             | 12   | 12    | U        | 12   | 13    | บ_     | 13             | 12            | U  | 12   |  |
| Pyrene                                                                                               | PAH   | 12             | U             | 12   | 49    |          | 12   | 14    | JX     | 13             | 12            | U  | 12   |  |
| Aroclor-1016                                                                                         | PCB   | 2.6            | U             | 2.6  | 2.8   | U        | 2.8  | 2.9   | U      | 2.9            | 2.7           | U  | 2.7  |  |
| Aroclor-1221                                                                                         | PCB   | 7.6            | U             | 7.6  | 8.1   | U        | 8.1  | 8.4   | ับ     | 8.4            | 7.9           | U  | 7.9  |  |
| Aroclor-1232                                                                                         | PCB   | 1.9            | U             | 1.9  | 2.0   | υ        | 2.0  | 2.1   | U      | 2.1            | 2.0           | U  | 2.0  |  |
| Aroclor-1242                                                                                         | PCB   | 4.4            | U             | 4.4  | 4.7   | U        | 4.7  | 4.9   | U      | 4.9            | 4.6           | U  | 4.6  |  |
| Aroclor-1248                                                                                         | PCB   | 4.4            | U             | 4.4  | 4.7   | U        | 4.7  | 4.9   | U      | 4.9            | 4.6           | U  | 4.6  |  |
| Aroclor-1254                                                                                         | PCB   | 2.5            | U             | 2.5  | 2.6   | U        | 2.6  | 2.7   | U      | 2.7            | 2.6           | U  | 2.6  |  |
| Aroclor-1260                                                                                         | PCB   | 2.6            | J             | 2,5  | 20    |          | 2.6  | 14    |        | 2.7_           | 2.6           | U  | 2.6  |  |
| Aldrin                                                                                               | PEST  | 0.26           | U             | 0.26 | 0.26  | U        | 0.26 | 0.26  | U      | 0.26           | 0.24          | U  | 0.24 |  |
| Alpha-BHC                                                                                            | PEST  | 0.22           | U             | 0.22 | 0.22  | U        | 0.22 | 0.22  | U      | 0.22           | 0.21          | U  | 0.21 |  |
| alpha-Chlordane                                                                                      | PEST  | 0.34           | U             | 0.34 | 0.33  | U        | 0.33 | 0.33  | U      | 0.33           | 0.31          | U  | 0.31 |  |
| beta-1,2,3,4,5,6-Hexachlorocyclohexane                                                               | PEST  | 0.69           | U             | 0.69 | 0.68  | U        | 0.68 | 0.68  | U      | 0.68           | 0.64          | U  | 0.64 |  |
| Delta-BHC                                                                                            | PEST  | 0.42           | U             | 0.42 | 0.41  | U        | 0.41 | 0.41  | U      | 0.41           | 0.39          | U  | 0.39 |  |
| Dichlorodiphenyldichloroethane                                                                       | PEST  | 0.57           | U             | 0.57 | 0.56  | U        | 0.56 | 0.56  | U      | 0.56           | 0.53          | U  | 0.53 |  |
| Dichlorodiphenyldichloroethylene                                                                     | PEST  | 0.25           | U             | 0.25 | 0.24  | U        | 0.24 | 0.24  | U      | 0.24           | 0.23          | Ü  | 0.23 |  |
| Dichlorodiphenyltrichloroethane                                                                      | PEST  | 0.61           | U             | 0.61 | 0.60  | U        | 0.60 | 0.61  | U      | 0.61           | 0.57          | U  | 0.57 |  |
| Dieldrin                                                                                             | PEST  | 0.22           | U             | 0.22 | 0.22  | U        | 0.22 | 0.22  | U      | 0.22           | 0.20          | U  | 0.20 |  |
| Endosulfan I                                                                                         | PEST  | 0.18           | U             | 0.18 | 0.18  | U        | 0.18 | 0.18  | U      | 0.18           | 0.17          | U  | 0.17 |  |
| Endosulfan II                                                                                        | PEST  | 0.30           | U             | 0.30 | 0.29  | U        | 0.29 | 0.30  | U      | 0.30           | 0.28          | U  | 0.28 |  |
| Endosulfan sulfate                                                                                   | PEST  | 0.29           | U             | 0.29 | 0.28  | U        | 0.28 | 0.28  | U      | 0.28           | 0.27          | U  | 0.27 |  |
| Endrin                                                                                               | PEST  | 0.32           | U             | 0.32 | 0.31  | U        | 0.31 | 0.31  | U      | 0.31           | 0.30          | U  | 0.30 |  |
| Endrin aldehyde                                                                                      | PEST  | 0.18           | U             | 0.18 | 0.18  | U        | 0.18 | 0.18  | U      | 0.18           | 0.17          | U  | 0.17 |  |
| Endrin ketone                                                                                        | PEST  | 0.51           | U             | 0.51 | 0.50  | U.       | 0.50 | 0.50  | U      | 0.50           | 0.47          | U  | 0.47 |  |
| Gamma-BHC (Lindane)                                                                                  | PEST  | 0.48           | U             | 0.48 | 0.48  | U        | 0.48 | 0.48  | U      | 0.48           | 0.45          | U. | 0.45 |  |
| gamma-Chlordane                                                                                      | PEST  | 0.28           | U             | 0.28 | 0.27  | U        | 0.27 | 0.27  | U      | 0.27           | 0.26          | U  | 0.26 |  |
| Heptachlor                                                                                           | PEST  | 0.22           | U             | 0.22 | 0.22  | U        | 0.22 | 0.22  | U      | 0.22           | 0.21          | U  | 0.21 |  |
| Heptachlor epoxide                                                                                   | PEST  | 0.44           | U             | 0.44 | 0.44  | U        | 0.44 | 0.44  | U      | 0.44           | 0.41          | U  | 0.41 |  |
| Methoxychlor                                                                                         | PEST  | 0.47           | U             | 0.47 | 0.46_ | U_       | 0.46 | 0.46  | U      | 0.46           | 0.44_         | U  | 0.44 |  |
| Toxaphene                                                                                            | PEST  | 16             | U             | 16   | 16    | U        | 16   | 16    | U      | 16             | 15            | U  | 15   |  |

| Attachment | 1               |
|------------|-----------------|
| Originator | N. K. Schiffern |
| Checked    | J. D. Skoglie   |
| Calc. No.  | 0100D-CA-V0508  |

| Sheet No. | 14 of 31 |
|-----------|----------|
| Date      | 07/08/13 |
| Date      | 07/08/13 |
| Rev. No.  | 0        |

| Attachment 1. 10                       | 0-D-77, 100-l | D-62, and 1 | .00-D-8 | 3:1 Waste | e Sites Veri | fication | Sample 1 | Results (O | rganio | :s).  |               |         |      |  |
|----------------------------------------|---------------|-------------|---------|-----------|--------------|----------|----------|------------|--------|-------|---------------|---------|------|--|
|                                        |               | 1           | 646, SP |           | J1R6         | 47, SP   | A-7      | JIRK       | M8, S  | PA-8  | J1RKM9, SPA-9 |         |      |  |
| CONSTITUENT                            | CLASS         | 4           | /8/2013 | 3         |              | /8/2013  |          |            | 9/201  |       |               | 29/2013 |      |  |
|                                        |               | ug/kg       | Q       | PQL       | ug/kg        | Q        | PQL      | ug/kg      | Q      | PQL   | ug/kg         | Q       | PQL  |  |
| Acenaphthene                           | PAH           | 10          | U       | 10        | 9.9          | U        | 9.9      | 10         | U      | 10    | 10            | U       | 10   |  |
| Acenaphthylene                         | PAH           | 9.2         | U       | 9.2       | 8.9          | U        | 8.9      | 9.1        | Ŭ      | 9.1   | 9.0           | U       | 9.0  |  |
| Anthracene                             | PAH           | 3.1         | U       | 3.1       | 3.0          | U        | 3.0      | 3.1        | U      | 3.1   | 3.0           | U       | 3.0  |  |
| Benzo(a)anthracene                     | PAH           | 18          | X       | 3.3       | 3.1          | U        | 3.1      | 3.2        | U      | 3.2   | 3.2           | U       | 3.2  |  |
| Benzo(a)pyrene                         | PAH           | 33          |         | 6.6       | 6.3          | U        | 6.3      | 6.5        | U      | 6.5   | 6.4           | U       | 6.4  |  |
| Benzo(b)fluoranthene                   | PAH           | 33          |         | 4.3       | 4.1          | U        | 4.1      | 4.3        | U      | 4.3   | 4.2           | U       | 4.2  |  |
| Benzo(ghi)perylene                     | PAH           | 25          | J       | 7.4       | 7.1          | U        | 7.1      | 7.3        | U      | 7.3   | 7.2           | U       | 7.2  |  |
| Benzo(k)fluoranthene                   | PAH           | 9.0         | J       | 4.0       | 3.9          | U        | 3.9      | 4.0        | U      | 4.0   | 3.9           | U       | 3.9  |  |
| Chrysene                               | PAH           | 28          | J       | 5.0       | 4.8          | U        | 4.8      | 4.9        | U      | 4.9   | 4.8           | U       | 4.8  |  |
| Dibenz[a,h]anthracene                  | PAH           | 11          | U       | 11        | 11           | U        | 11       | 11         | U      | 11    | - 11          | U       | 11   |  |
| Fluoranthene                           | PAH           | 46          |         | 13        | 13           | U        | 13       | 13         | Ŭ      | 13    | 13            | U       | 13   |  |
| Fluorene                               | PAH           | 5.4         | U       | 5.4       | 5.2          | U        | 5.2      | 5.4        | U      | 5.4   | 5.3           | U       | 5.3  |  |
| Indeno(1,2,3-cd)pyrene                 | PAH           | 18          | J       | 12        | 12           | U        | 12       | 12         | U      | 12    | 12            | U       | 12   |  |
| Naphthalene                            | PAH           | 12          | U       | 12        | 12           | U        | 12       | 12         | U      | 12    | _12           | U       | 12   |  |
| Phenanthrene                           | PAH           | 12          | U       | 12        | 12           | U        | 12       | 12         | U      | 12    | 12            | U       | 12   |  |
| Pyrene                                 | PAH           | 60          | X       | 12        | 12           | U        | 12       | 12         | U      | 12    | 12            | υ       | 12   |  |
| Aroclor-1016                           | PCB           | 2.7         | U       | 2.7       | 2.7          | U        | 2.7      | 2.8        | U      | 2.8   | 2.7           | U       | 2.7  |  |
| Aroclor-1221                           | PCB           | 7.9         | U       | 7.9       | 7.7          | U        | 7.7      | 8.1        | U      | 8.1   | 7.8           | U       | 7.8  |  |
| Aroclor-1232                           | PCB           | 2.0         | U       | 2.0       | 1.9          | U        | 1.9      | 2.0        | U      | 2.0   | 1.9           | U       | 1.9  |  |
| Aroclor-1242                           | PCB           | 4.6         | U       | 4.6       | 4.5          | บ        | 4.5      | 4.7        | U      | 4.7   | 4.5           | U       | 4.5  |  |
| Aroclor-1248                           | PCB           | 4.6         | U       | 4.6       | 4.5          | U        | 4.5      | 4.7        | U      | 4.7   | 4.5           | U       | 4.5  |  |
| Aroclor-1254                           | PCB           | 2.6         | U       | 2.6       | 2.5          | U        | 2.5      | 2.6        | U      | 2.6   | 2.5           | U       | 2.5  |  |
| Aroclor-1260                           | PCB           | 3.9         | J       | 2.6       | 2.5          | U        | 2.5      | 2.6        | U      | 2.6   | 3.1           | J       | 2.5  |  |
| Aldrin                                 | PEST          | 0.25        | U       | 0.25      | 0.25         | U        | 0.25     | 0.25       | U      | 0.25  | 0.25          | U       | 0.25 |  |
| Alpha-BHC                              | PEST          | 0.21        | U       | 0.21      | 0.21         | U        | 0.21     | 0.21       | U      | 0.21  | 0.21          | U       | 0.21 |  |
| alpha-Chiordane                        | PEST          | 0.32        | U       | 0.32      | 0.32         | U        | 0.32     | 0.32       | U      | 0.32  | 0.32          | U       | 0.32 |  |
| beta-1,2,3,4,5,6-Hexachlorocyclohexane | PEST          | 0.67        | U       | 0.67      | 0.66         | U_       | 0.66     | 0.65       | U      | 0.65  | 0.66          | U       | 0.66 |  |
| Delta-BHC                              | PEST          | 0.40        | U       | 0.40      | 0.40         | U        | 0.40     | 0.39       | U      | 0.39  | 0.40          | U       | 0.40 |  |
| Dichlorodiphenyldichloroethane         | PEST          | 0.55        | U       | 0.55      | 0.55         | U        | 0.55     | 0.53       | U      | 0.53  | 0.54          | U       | 0.54 |  |
| Dichlorodiphenyldichloroethylene       | PEST          | 0.24        | U       | 0.24      | 0.24         | U        | 0.24     | 0.23       | U      | 0.23  | 0.24          | U       | 0.24 |  |
| Dichlorodiphenyltrichloroethane        | PEST          | 0.59        | U       | 0.59      | 0.59         | U        | 0.59     | 0.58       | U      | 0.58  | 0.59          | U       | 0.59 |  |
| Dieldrin                               | PEST          | 0.21        | U       | 0.21      | 0.21         | U        | 0.21     | 0.21       | U      | 0.21  | 0.21          | U       | 0.21 |  |
| Endosulfan I                           | PEST          | 0.18        | U       | 0.18      | 0.18         | U        | 0.18     | 0.17       | U      | 0.17  | 0.18          | U       | 0.18 |  |
| Endosulfan II                          | PEST          | 0.29        | U       | 0.29      | 0.29         | U        | 0.29     | 0.28       | U      | 0.28  | 0.29          | U       | 0.29 |  |
| Endosulfan sulfate                     | PEST          | 0.28        | U       | 0.28      | 0.28         | U        | 0.28     | 0.27       | บ_     | 0.27  | 0.27          | U       | 0.27 |  |
| Endrin                                 | PEST          | 0.31        | U       | 0.31      | 0.31         | U        | 0.31     | 0.30       | U      | 0.30  | 0.30          | U       | 0.30 |  |
| Endrin aldehyde                        | PEST          | 0.17        | U       | 0.17      | 0.17         | U        | 0.17     | 0.17       | U      | 0.17  | 0.17          | U       | 0.17 |  |
| Endrin ketone                          | PEST          | 0.49        | Ū       | 0.49      | 0.49         | U        | 0.49     | 0.48       | U      | 0.48_ | 0.49          | U       | 0.49 |  |
| Gamma-BHC (Lindane)                    | PEST          | 0.47        | U       | 0.47      | 0.46         | U        | 0.46     | 0.45       | U      | 0.45  | 0.46          | U       | 0.46 |  |
| gamma-Chlordane                        | PEST          | 0.27        | U       | 0.27      | 0.27         | U        | 0.27     | 0.26       | U      | 0.26  | 0.26          | U       | 0.26 |  |
| Heptachlor                             | PEST          | 0.21        | U       | 0.21      | 0.21         | U        | 0.21     | 0.21       | U      | 0.21  | 0.21          | U       | 0.21 |  |
| Heptachlor epoxide                     | PEST          | 0.43        | U       | 0.43      | 0.43         | U        | 0.43     | 0.42       | U      | 0.42  | 0.42          | U       | 0.42 |  |
| Methoxychlor                           | PEST          | 0.45        | U       | 0.45      | 0.45         | U        | 0.45     | 0.44       | U      | 0.44  | 0.45          | U       | 0.45 |  |
| Toxaphene                              | PEST          | 16          | U       | 16        | 16           | U        | 16       | 15         | U      | _15   | 16            | U       | 16   |  |

| Attachment   | 1               | Sheet No. | 15 of 31 |
|--------------|-----------------|-----------|----------|
| Originator _ | N. K. Schiffern | Date      | 07/08/13 |
| Checked      | J. D. Skoglie   | Date      | 07/08/13 |
| Calc. No.    | 0100D-CA-V0508  | Rev. No.  | 0        |

| Attachment 1. 10                       |       |              | M6, SP |      |         | M7, SP  |        | JIRKN        | 45, SI | PA-12 | J1R670, Split of<br>J1R645 |        |    |  |
|----------------------------------------|-------|--------------|--------|------|---------|---------|--------|--------------|--------|-------|----------------------------|--------|----|--|
| CONSTITUENT                            | CLASS | 4/           | 29/201 | 3    | 4/.     | 29/2013 |        | 4/2          | 29/201 |       |                            | 8/2013 |    |  |
|                                        |       | ug/kg        | Q      | PQL  | ug/kg   | Q       | PQL    | ug/kg        | Q      | PQL   | ug/kg                      | Q      | PQ |  |
| Acenaphthene                           | PAH   | 9.9          | U      | 9.9  | 9.9     | U       | 9.9    | 10           | U      | 10    | 23                         | J      | 20 |  |
| Acenaphthylene                         | PAH   | 8.9          | U      | 8.9  | 8.9     | U       | 8.9    | 9.0          | U      | 9.0   | 28                         | U      | 28 |  |
| Anthracene                             | PAH   | 3.0          | U      | 3.0  | 3.0     | U       | 3.0    | 3.1          | U      | 3.1   | 5.8                        | J      | 3. |  |
| Benzo(a)anthracene                     | PAH   | 3.2          | U      | 3.2  | 3.2     | U       | 3.2    | 3.2          | U      | 3.2   | 11                         | J      | 3. |  |
| Benzo(a)pyrene                         | PAH   | 6.4          | U      | 6.4  | 6.3     | U       | 6.3    | 6.4          | U      | 6.4   | 15                         | J      | 3  |  |
| Benzo(b)fluoranthene                   | PAH   | 4.2          | U      | 4.2  | 4.2     | U       | 4.2    | 4.2          | U      | 4.2   | 17                         |        | 3  |  |
| Benzo(ghi)perylene                     | PAH   | 7.1          | U      | 7.1  | 7.1     | U       | 7.1    | 7.2          | U      | 7.2   | 10                         | J      | 3  |  |
| Benzo(k)fluoranthene                   | PAH   | 3.9          | U      | 3.9  | 3.9     | U       | 3.9    | 3.9          | U      | 3.9   | 6.4                        | J      | 3  |  |
| Chrysene                               | PAH   | 4.8          | U      | 4.8  | 4.8     | U       | 4.8    | 5.0          | J      | 4.8   | 16                         |        | 3  |  |
| Dibenz[a,h]anthracene                  | PAH   | 11           | U      | 11   | 11      | U       | 11     | 11           | U      | 11    | 6.2                        | U      | 6  |  |
| Fluoranthene                           | PAH   | 13           | U      | 13   | 13      | U       | 13     | 13           | U      | 13    | 35                         | -      | 6  |  |
| Fluorene                               | PAH   | 5.2          | U      | 5.2  | 5.2     | U       | 5.2    | 5.3          | U      | 5.3   | 6.2                        | U      | 6  |  |
| Indeno(1,2,3-cd)pyrene                 | PAH   | 12           | U      | 12   | 12      | U       | 12     | 12           | U      | 12    | 11                         | J      | 3  |  |
| Naphthalene                            | PAH   | 12           | U      | 12   | 12      | U       | 12     | 12           | U      | 12    | 30                         | J      |    |  |
| Phenanthrene                           | PAH   | 12           | U      | 12   | 12      | U       | 12     | 12           | U      | 12    | 23                         | J      | (  |  |
| Pyrene                                 | PAH   | 12           | U      | 12   | 12      | U       | 12     | 12           | U      | 12    | 27                         | JN     |    |  |
| Aroclor-1016                           | PCB   | 2.6          | U      | 2.6  | 2.7     | U       | 2.7    | 2.7          | U      | 2.7   | 9.1                        | U      |    |  |
| Aroclor-1221                           | PCB   | 7.4          | U      | 7.4  | 7.9     | U       | 7.9    | 7.9          | U      | 7.9   | 9.1                        | U      |    |  |
| Aroclor-1232                           | PCB   | 1.9          | U      | 1.9  | 2.0     | U       | 2.0    | 2.0          | U      | 2.0   | 9.1                        | U      | 1  |  |
| Aroclor-1242                           | PCB   | 4.3          | U      | 4.3  | 4.6     | U       | 4.6    | 4.6          | U      | 4.6   | 9.1                        | U      | -  |  |
| Aroclor-1248                           | PCB   | 4.3          | U      | 4.3  | 4.6     | U       | 4.6    | 4.6          | U      | 4.6   | 9.1                        | U      | 1  |  |
| Aroclor-1254                           | PCB   | 2.4          | U      | 2.4  | 2.6     | U       | 2.6    | 2.6          | U      | 2.6   | 5.7                        | U      | 1  |  |
| Aroclor-1260                           | PCB   | 2.4          | U      | 2.4  | 14      |         | 2.6    | 2.6          | U      | 2.6   | 5.7                        | U      |    |  |
| Aldrin                                 | PEST  | 0.24         | U      | 0.24 | 0.24    | U       | 0.24   | 0.25         | U      | 0.25  | 0.32                       | U      | C  |  |
| Alpha-BHC                              | PEST  | 0.20         | U      | 0.20 | 0.21    | U       | 0.21   | 0.21         | U      | 0.21  | 0.19                       | U      | (  |  |
| alpha-Chlordane                        | PEST  | 0.31         | U      | 0.31 | 0.31    | U       | 0.31   | 0.32         | U      | 0.32  | 0.59                       | U      | (  |  |
| beta-1,2,3,4.5,6-Hexachlorocyclohexane | PEST  | 0.63         | U      | 0.63 | 0.64    | U       | 0.64   | 0.65         | U      | 0.65  | 0.31                       | U      | (  |  |
| Chlordane                              | PEST  | THE STATE OF |        | 经济   | 图 2000年 | 7.9.9   | 100 TS | <b>2007年</b> | 100    | 10225 | 3.9                        | U      |    |  |
| Delta-BHC                              | PEST  | 0.38         | U      | 0.38 | 0.39    | U       | 0.39   | 0.39         | U      | 0.39  | 0.25                       | U      | (  |  |
| Dichlorodiphenyldichloroethane         | PEST  | 0.52         | U      | 0.52 | 0.53    | U       | 0.53   | 0.54         | U      | 0.54  | 0.23                       | U      | (  |  |
| Dichlorodiphenyldichloroethylene       | PEST  | 0.23         | U      | 0.23 | 0.23    | U       | 0.23   | 0.23         | U      | 0.23  | 0.41                       | U      | (  |  |
| Dichlorodiphenyltrichloroethane        | PEST  | 0.56         | U      | 0.56 | 0.57    | U       | 0.57   | 0.58         | U      | 0.58  | 0.65                       | U      | (  |  |
| Dieldrin                               | PEST  | 0.20         | U      | 0.20 | 0.20    | U       | 0.20   | 0.21         | U      | 0.21  | 0.22                       | U      | 1  |  |
| Endosulfan I                           | PEST  | 0.17         | U      | 0.17 | 0.17    | U       | 0.17   | 0.17         | U      | 0.17  | 0.59                       | U      | 1  |  |
| Endosulfan II                          | PEST  | 0.27         | U      | 0.27 | 0.28    | U       | 0.28   | 0.28         | U      | 0.28  | 0.24                       | U      | 1  |  |
| Endosulfan sulfate                     | PEST  | 0.26         | U      | 0.26 | 0.27    | U       | 0.27   | 0.27         | U      | 0.27  | 0.35                       | U      | (  |  |
| Endrin                                 | PEST  | 0.29         | U      | 0.29 | 0.30    | U       | 0.30   | 0.30         | U      | 0.30  | 0.16                       | U      | (  |  |
| Endrin aldehyde                        | PEST  | 0.16         | U      | 0.16 | 0.17    | U       | 0.17   | 0.17         | U      | 0.17  | 0.40                       | U      | (  |  |
| Endrin ketone                          | PEST  | 0.47         | U      | 0.47 | 0.47    | U       | 0.47   | 0.48         | U      | 0.48  | 0.43                       | U      | 1  |  |
| Gamma-BHC (Lindane)                    | PEST  | 0.44         | U      | 0.44 | 0.45    | U       | 0.45   | 0.46         | U      | 0.46  | 0.17                       | U      | 1  |  |
| gamma-Chlordane                        | PEST  | 0.25         | U      | 0.25 | 0.26    | U       | 0.26   | 0.26         | U      | 0.26  | 0.16                       | U      | 1  |  |
| Heptachlor                             | PEST  | 0.20         | U      | 0.20 | 0.21    | U       | 0.21   | 0.21         | U      | 0.21  | 0.21                       | U      | 1  |  |
| Heptachlor epoxide                     | PEST  | 0.41         | U      | 0.41 | 0.41    | U       | 0.41   | 0.42         | U      | 0.42  | 0.45                       | U      | 1  |  |
| Methoxychlor                           | PEST  | 0.43         | U      | 0.43 | 0.44    | U       | 0.44   | 0.44         | U      | 0.44  | 0.75                       | U      | (  |  |
| Toxaphene                              | PEST  | 15           | U      | 15   | 15      | U       | 15     | 16           | U      | 16    | 16_                        | U      |    |  |

 Attachment
 1

 Originator
 N. K. Schiffern

 Checked
 J. D. Skoglie

 Calc. No.
 0100D-CA-V0508

Sheet No. 16 of 31 Date 07/08/13 Date 07/08/13 Rev. No. 0

| Attachment 1, 100                      | -D-77, 100-D- | 62, and 10 | 78, FS           | -1                  | J1PV  | VC9, F           | S-2        | J1PV  | VD0, F    | S-3    | J1PWD1, FS-4 |     |                                              |  |
|----------------------------------------|---------------|------------|------------------|---------------------|-------|------------------|------------|-------|-----------|--------|--------------|-----|----------------------------------------------|--|
|                                        | CLASS         | _          |                  | 9/18/2012 9/18/2012 |       |                  |            |       | 9/18/2012 |        |              |     |                                              |  |
| CONSTITUENT                            | CLASS         |            | 5/2013           |                     | ug/kg | 0                | POL        | ug/kg | Q         | PQL    | ug/kg        | _و_ | PQL                                          |  |
|                                        |               | ug/kg      | Q                | PQL                 | 9.7   | <del>- V</del> - | 9.7        | 9.8   | U         | 9.8    | 10           | Ü   | 10                                           |  |
| Acenaphthene                           | PAH           | 9.8        | U                | 9.8                 | 8.8   | _ <del>U</del>   | 8.8        | 8.8   | U         | 8.8    | 9.0          | U_  | 9.0                                          |  |
| Acenaphthylene                         | PAH           | 8.8        | U                | 8.8                 | 3.0   | U                | 3.0        | 3.0   | U         | 3.0    | 3.0          | U   | 3.0                                          |  |
| Anthracene                             | PAH           | 3.0        | U                | 3.0                 | 3.1   | U                | 3.1        | 3.1   | U         | 3.1    | 3.2          | U   | 3.2                                          |  |
| Benzo(a)anthracene                     | PAH           | 11         | JX               | 3.1                 | 6.2   | U                | 6.2        | 6.3   | U         | 6.3    | 10           | J   | 6.4                                          |  |
| Benzo(a)pyrene                         | PAH           | 16         |                  | 6.3                 | 7.3   | JX               | 4.1        | 4.1   | U         | 4.1    | 15           | X   | 4.2                                          |  |
| Benzo(b)fluoranthene                   | PAH           | 17         | _ X              | 4.1                 |       | U                | 7.0        | 7.0   | U         | 7.0    | 7.2          | U   | 7.2                                          |  |
| Benzo(ghi)perylene                     | PAH           | 7.1        | U                | 7.1                 | 7.0   | U                | 3.8        | 3.9   | U         | 3.9    | 12           | J   | 3.9                                          |  |
| Benzo(k)fluoranthene                   | PAH           | 3.9        | U                | 3.9                 | 3.8   | JX               | 4.7        | 4.7   | U         | 4.7    | 18           | J   | 4.8                                          |  |
| Chrysene                               | PAH           | 15         | JX               | 4.7                 | 6.0   | U U              | 11         | 11    | U         | - 11   | 11           | U   | 11                                           |  |
| Dibenz[a,h]anthracene                  | PAH           | 11         | U                | 11                  | 11    | U                | 13         | 13    | U         | 13     | 21           | J   | 13                                           |  |
| Fluoranthene                           | PAH           | 34         | J                | 13                  | 13    | U                | 5.1        | 5.2   | U         | 5.2    | 5.3          | U   | 5.3                                          |  |
| Fluorene                               | PAH           | 5.2        | U                | 5.2                 | 5.1   |                  | 12         | 12    | U         | 12     | 12           | U   | 12                                           |  |
| Indeno(1,2,3-cd)pyrene                 | PAH           | 14         |                  | 12                  | 12    | U                | 12         | 12    | T U       | 12     | 12           | U   | 12                                           |  |
| Naphthalene                            | PAH           | 12         | U                | 12                  | 12    | U                | 12         | 12    | U         | 12     | 12           | U   | 12                                           |  |
| Phenanthrene                           | PAH           | 12         | U                | 12                  | 12    | U                |            | 12    | + 0       | 12     | 20           | J   | 12                                           |  |
| Pyrene                                 | PAH           | 40         |                  | 12                  | 14    | 1                | 12         | 2.6   | U         | 2.6    | 2.7          | U   | 2.                                           |  |
| Arocior-1016                           | PCB           | 2.8        | U                | 2.8                 | 2.6   | U                | 2.6        | 7.4   | U         | 7.4    | 7.8          | Tu  | 7.                                           |  |
| Aroclor-1221                           | PCB           | 8.2        | U                | 8.2                 | 7.6   | U                | 7.6        |       | 1 0       | 1.8    | 1.9          | U   | 1.5                                          |  |
|                                        | PCB           | 2.0        | U                | 2.0                 | 1.9   | U                | 1.9        | 1.8   | U         | 4.3    | 4.5          | U   | 4.                                           |  |
| Aroclor-1232                           | PCB           | 4.8        | U                | 4.8                 | 4.4   | U                | 4.4        |       | U         | 4.3    | 4.5          | U   | 4.                                           |  |
| Aroclor-1242                           | PCB           | 4.8        | U                | 4.8                 | 4.4   | U                | 4.4        | 4.3   | 1         | 2.4    | 2.5          | U   | 2.                                           |  |
| Aroclor-1248                           | PCB           | 2.7        | U                | 2.7                 | 2.5   | U                | 2.5        | 2.4   | 1 0       | 2.4    | 2.5          | U   | 2.                                           |  |
| Aroclor-1254                           | PCB           | 2.7        | U                | 2.7                 | 3.4   | J                | 2.5        |       | _         | 0.24   | 0.23         | Ū   | 0.                                           |  |
| Aroctor-1260                           | PEST          | 0.25       | U                | 0.25                | 0.24  | U                | 0.24       |       | 1 0       | 0.24   | 0.20         | TŪ  |                                              |  |
| Aldrin                                 | PEST          | 0.21       | U                | 0.21                | 0.20  | U                | 0.20       |       | 1 5       |        | 0.30         | ŤŪ  |                                              |  |
| Alpha-BHC                              | PEST          | 0.32       | U                | 0.32                | 0.31  | U                | 0.31       |       |           |        | 0.61         | T U |                                              |  |
| alpha-Chlordane                        | PEST          | 0.67       | U                | 0.67                | 0.63  | U                |            |       |           |        | 0.37         | ΤŪ  |                                              |  |
| beta-1,2,3,4,5,6-Hexachlorocyclohexane | PEST          | 0.40       | U                | 0.40                | 0.38  | U                |            |       |           |        | 0.51         | 1 0 |                                              |  |
| Delta-BHC                              | PEST          | 0.55       | U                | 0.55                | 0.52  | U                |            |       |           |        | 0.22         | Ηŭ  | _                                            |  |
| Dichlorodiphenyldichloroethane         | PEST          | 0.24       | U                | 0.24                | 0.23  | U                |            |       |           |        | 0.55         | −tū |                                              |  |
| Dichlorodiphenyldichloroethylene       | PEST          | 0.59       | U                | 0.59                | 0.56  | U                |            |       |           |        |              | Ťυ  |                                              |  |
| Dichlorodiphenyltrichloroethane        | PEST          | 0.21       | U                | 0.21                | 0.20  | U                |            |       |           |        | 0.15         | +i  |                                              |  |
| Dieldrin                               | PEST          | 0.18       | +0               | 0.18                | 0.17  | l                |            |       |           |        |              | 1   | _                                            |  |
| Endosulfan I                           | PEST          | 0.29       | Ü                | 0.29                | 0.27  | L                |            |       |           |        |              |     | 1 0                                          |  |
| Endosulfan II                          | PEST          | 0.28       | T U              | 0.28                | 0.33  | J.               |            |       |           |        |              |     | 1 0                                          |  |
| Endosulfan sulfate                     | PEST          | 0.31       | Τŭ               |                     | 0.29  |                  |            |       |           | 0.30   |              |     | <u>, c</u>                                   |  |
| Endrin                                 | PEST          | 0.37       | $+\tilde{\iota}$ |                     |       |                  | J 0.1      |       |           | 0.17   |              |     | <u>,                                    </u> |  |
| Endrin aldehyde                        | PEST          | 0.17       | + -              |                     | 0.47  |                  | J 0.4      |       |           | J 0.4  | _            | _   | J (                                          |  |
| Endrin ketone                          | PEST          | 0.47       | 1                |                     |       |                  | 0.4        |       |           | J 0.43 |              |     |                                              |  |
| Gamma-BHC (Lindane)                    | PEST          | 0.47       | +i               |                     |       |                  | J 0.2      |       |           | U 0.20 |              | _   | 11 1                                         |  |
| gamma-Chlordane                        | PEST          | 0.27       | 一一               |                     |       | )                | J 0.2      |       |           | U 0.2  |              |     | U                                            |  |
| Heptachlor                             |               | 0.43       |                  |                     |       |                  | <u>0.4</u> |       |           | U 0.4  |              | -   | U                                            |  |
| Heptachlor epoxide                     | PEST          | 0.45       |                  |                     |       |                  | U 0.4      |       |           | U 0.4  |              |     | U                                            |  |
| Methoxychlor                           | PEST          | 16         |                  | J 16                |       |                  | U I        | 5 13  | 5         | U 15   | 15           |     | <u> </u>                                     |  |

Sheet No. 17 of 31 Date 07/08/13 Date 07/08/13 Rev. No. 0

| Attachment 1. 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Verification Sample | Results (Organics) |
|----------------------------------------------------------------------------------|--------------------|
|----------------------------------------------------------------------------------|--------------------|

| CONSTITUENT                            | CLASS | I     | WD2,   |      |       | PWD3,    | FS-6 |
|----------------------------------------|-------|-------|--------|------|-------|----------|------|
| CONSTITUENT                            | CLASS | 9     | /18/20 |      | 9     | 9/18/20: | 12   |
|                                        |       | ug/kg | l Q    | PQL  | ug/kg | Q        | POL  |
| Acenaphthene                           | PAH   | 9.6   | U      | 9.6  | 9.6   | Ū        | 9.6  |
| Acenaphthylene                         | PAH   | 8.7   | U      | 8.7  | 8.6   | U        | 8.6  |
| Anthracene                             | PAH   | 2.9   | U      | 2.9  | 2.9   | U        | 2.9  |
| Benzo(a)anthracene                     | PAH   | 3.1   | U      | 3.1  | 3.1   | U        | 3.1  |
| Benzo(a)pyrene                         | PAH   | 6.2   | U      | 6.2  | 6.1   | U        | 6.1  |
| Benzo(b)fluoranthene                   | PAH   | 4.0   | U      | 4.0  | 4.0   | U        | 4.0  |
| Benzo(ghi)perylene                     | PAH   | 6.9   | _U     | 6.9  | 6.9   | U        | 6.9  |
| Benzo(k)fluoranthene                   | PAH   | 3.8   | U      | 3.8  | 3.8   | U        | 3.8  |
| Chrysene                               | PAH   | 4.7   | U      | 4.7  | 4.6   | U        | 4.6  |
| Dibenz[a,h]anthracene                  | PAH   | 11    | บ      | 11   | 11    | U        | 11   |
| Fluoranthene                           | PAH   | 13    | U      | 13   | 12    | U        | 12   |
| Fluorene                               | PAH   | 5.1   | U      | 5.1  | 5.1   | Ū        | 5.1  |
| Indeno(1,2,3-cd)pyrene                 | PAH   | 12    | U      | 12   | 11    | U        | 11   |
| Naphthalene                            | PAH   | 12    | U      | 12   | 11    | Ü        | 11   |
| Phenanthrene Phenanthrene              | PAH   | 12    | U      | 12   | 11    | Ū        | 11   |
| Pyrene                                 | PAH   | 12    | U      | 12   | 11    | U        | 11   |
| Aroclor-1016                           | PCB   | 2.6   | U      | 2.6  | 2.7   | Ū        | 2.7  |
| Aroclor-1221                           | PCB   | 7.7   | U      | 7.7  | 7.8   | Ü        | 7.8  |
| Aroclor-1232                           | PCB   | 1.9   | U      | 1.9  | 2.0   | U        | 2,0  |
| Aroclor-1242                           | PCB   | 4.5   | U      | 4.5  | 4.5   | Ū        | 4.5  |
| Aroclor-1248                           | PCB   | 4.5   | U      | 4.5  | 4.5   | Ü        | 4.5  |
| Aroclor-1254                           | PCB   | 2.5   | U      | 2.5  | 2.5   | Ū        | 2.5  |
| Aroclor-1260                           | PCB   | 2.5   | U      | 2.5  | 2.5   | Ü        | 2.5  |
| Aldrin                                 | PEST  | 0.25  | U      | 0.25 | 0.25  | Ü        | 0.25 |
| Alpha-BHC                              | PEST  | 0.21  | Ū      | 0.21 | 0.21  | Ü        | 0.21 |
| alpha-Chlordane                        | PEST  | 0.32  | Ū      | 0.32 | 0.32  | Ü        | 0.32 |
| beta-1,2,3,4,5,6-Hexachlorocyclohexane | PEST  | 0.66  | U      | 0.66 | 0.66  | Ŭ        | 0.66 |
| Delta-BHC                              | PEST  | 0.40  | U      | 0.40 | 0.40  | U        | 0.40 |
| Dichlorodiphenyldichloroethane         | PEST  | 0.54  | Ū      | 0.54 | 0.55  | U        | 0.55 |
| Dichlorodiphenyldichloroethylene       | PEST  | 0.24  | U      | 0.24 | 0.24  | U        | 0.24 |
| Dichlorodiphenyltrichloroethane        | PEST  | 0.59  | U      | 0.59 | 0.59  | Ü        | 0.59 |
| Dieldrin                               | PEST  | 0.21  | U      | 0.21 | 0.21  | Ū        | 0.21 |
| Endosulfan I                           | PEST  | 0.17  | U      | 0.17 | 0.18  | Ū        | 0.18 |
| Endosulfan II                          | PEST  | 0.29  | U      | 0.29 | 0.29  | Ü        | 0.29 |
| Endosulfan sulfate                     | PEST  | 0.27  | Ū      | 0.27 | 0.28  | U        | 0.28 |
| Endrin                                 | PEST  | 0.30  | U      | 0.30 | 0.31  | Ū        | 0.31 |
| Endrin aldehyde                        | PEST  | 0.17  | U      | 0.17 | 0.17  | Ü        | 0.17 |
| Endrin ketone                          | PEST  | 0.49  | U      | 0.49 | 0.49  | Ū        | 0.49 |
| Gamma-BHC (Lindane)                    | PEST  | 0.46  | U      | 0.46 | 0.46  | Ü        | 0.46 |
| gamma-Chlordane                        | PEST  | 0.26  | U      | 0.26 | 0.27  | U        | 0.27 |
| Heptachlor                             | PEST  | 0.21  | U      | 0.21 | 0.21  | U        | 0.21 |
| Heptachlor epoxide                     | PEST  | 0.42  | U      | 0.42 | 0.43  | Ū        | 0.43 |
| Methoxychlor                           | PEST  | 0.45  | U      | 0.45 | 0.45  | Ü        | 0.45 |
| Toxaphene                              | PEST  | 16    | U      | 16   | 16    | Ū        | 16   |

| Attachment_ | 1               |
|-------------|-----------------|
| Originator  | N. K. Schiffern |
| Checked     | J. D. Skoglie   |
| Calc. No.   | 0100D-CA-V0508  |

| Sheet No. | 18 of 31 |
|-----------|----------|
| Date      | 07/08/13 |
| Date_     | 07/08/13 |
| Rev. No.  | 0        |

| Attachment 1.  CONSTITUENT                             | CLASS        | J1PW  | 83, EX     | C-3 *    | J1PW93    | PW83    | cate of   | J1PW        | /81, EX | (C-1      |             | 82, EX |              |
|--------------------------------------------------------|--------------|-------|------------|----------|-----------|---------|-----------|-------------|---------|-----------|-------------|--------|--------------|
| CONSTITUENT                                            | CLASS        |       | 18/2012    |          |           | 18/2012 |           |             | 18/201  |           |             | 8/2012 | -            |
| 10.100111                                              | 21104        | ug/kg | Q          | PQL      | ug/kg     | Q<br>U  | PQL<br>28 | ug/kg<br>27 | U       | PQL<br>27 | ug/kg<br>27 | Q<br>U | P            |
| 1,2,4-Trichlorobenzene                                 | SVOA         | 27    | U          | 27       | 28        | U       | 22        | 21          | U       | 21        | 21          | U      | -            |
| 1.2-Dichlorobenzene                                    |              | 21    | U          |          | 12        | U       | 12        | 12          | U       | 12        | 12          | U      | -            |
| 1.3-Dichlorobenzene                                    | SVOA         | 11    | U          | 11       | 14        | U       | 14        | 13          | U       | 13        | 13          | U      |              |
| 1,4-Dichlorobenzene 2,4,5-Trichlorophenol              | SVOA         | 9.6   | U          | 9.6      | 9.9       | U       | 9.9       | 9.6         | U       | 9.6       | 9.7         | U      |              |
| 2,4,6-Trichlorophenol                                  | SVOA         | 9.6   | υ          | 9.6      | 9.9       | U       | 9.9       | 9.6         | U       | 9.6       | 9.7         | U      | $\vdash$     |
| 2.4-Dichlorophenol                                     | SVOA         | 9.6   | U          | 9.6      | 9.9       | U       | 9.9       | 9.6         | U       | 9.6       | 9.7         | υ      | 1            |
| 2,4-Dimethylphenol                                     | SVOA         | 63    | U          | 63       | 66        | U       | 66        | 64          | U       | 64        | 64          | U      |              |
| 2,4-Dinitrophenol                                      | SVOA         | 320   | UJ         | 320      | 330       | UJ      | 330       | 320         | UJ      | 320       | 320         | UJ     |              |
| 2,4-Dinitrotoluene                                     | SVOA         | 63    | U          | 63       | 66        | U       | 66        | 64          | U       | 64        | 64          | U      |              |
| 2.6-Dinitrotoluene                                     | SVOA         | 27    | U          | 27       | 28        | U       | 28        | 27          | U       | 27        | 27          | U      |              |
| 2-Chloronaphthalene                                    | SVOA         | 9.6   | U          | 9.6      | 9.9       | U       | 9.9       | 9.6         | U       | 9.6       | 9.7         | U      |              |
| 2-Chlorophenol                                         | SVOA         | 20    | U          | 20       | 21        | U       | 21        | 20          | U       | 20        | 20          | U      |              |
| 2-Methylnaphthalene                                    | SVOA         | 120   | J          | 18       | 20        | J       | 19        | 18          | U       | 18        | 18          | U      | T            |
| 2-Methylphenol (cresol, o-)                            | SVOA         | 12    | U          | 12       | 13        | U       | 13        | 13          | U       | 13        | 13          | U      |              |
| 2-Nitroaniline                                         | SVOA         | 48    | U          | 48       | 50        | U       | 50        | 48          | U       | 48        | 49          | U      | -            |
| 2-Nitrophenol                                          | SVOA         | 9.6   | U          | 9.6      | 9.9       | Ŭ       | 9.9       | 9.6         | U       | 9.6       | 9.7         | U      |              |
| 3,3'-Dichlorobenzidine                                 | SVOA         | 86    | UJ         | 86       | 89        | UJ      | 89        | 87          | UJ      | 87        | 87          | UJ     |              |
| 3+4 Methylphenol (cresol, m+p)                         | SVOA         | 32    | U          | 32       | 33        | U       | 33        | 32          | U       | 32        | 32          | U      |              |
| 3-Nitroaniline                                         | SVOA         | 70    | U          | 70       | 72        | U       | 72        | 70          | U       | 70        | 71          | U      |              |
| 4,6-Dinitro-2-methylphenol                             | SVOA         | 320   | UJ         | 320      | 330       | UJ      | 330       | 320         | UJ      | 320       | 320         | UJ     |              |
| 4-Bromophenylphenyl ether                              | SVOA         | 18    | U          | 18       | 19        | U       | 19        | 18          | U       | 18        | 18          | U      | -            |
| 4-Chloro-3-methylphenol                                | SVOA         | 63    | U          | 63       | 66        | U       | 66        | 64          | U       | 64        | 64          | U      | 1            |
| 4-Chloroaniline                                        | SVOA         | 78    | U          | 78       | 81        | U       | 81        | 79          | U       | 79        | 80          | U      | +            |
| 4-Chlorophenylphenyl ether                             | SVOA         | 20    | U          | 20       | 21        | U       | 21        | 20          | U       | 20        | 20          | U      | +            |
| 4-Nitroaniline                                         | SVOA         | 69    | U          | 69       | 72        | U       | 72        | 70          | U       | 70        | 70          | U      | +            |
| 4-Nitrophenol                                          | SVOA         | 93    | U          | 93       | 96        | U       | 96        | 94          | U       | 94        | 94          | U      | +            |
| Acenaphthene                                           | SVOA         | 390   | -          | 9.9      | 35        | J       | 10        | 9.9         | U       | 9.9       | 10          | U      | +            |
| Acenaphthylene                                         | SVOA         | 120   | J          | 16       | 17        | U       | 17        | 16          | U       | 16        | 17          | U      | +            |
| Anthracene                                             | SVOA         | 1000  | -          | 16       | 73<br>150 | J       | 17        | 16          | U       | 16        | 24          | 1      | +            |
| Benzo(a)anthracene                                     | SVOA         | 1800  | 24 4 9 9 9 | 19       | 110       | 1       | 20        | 19          | U       | 19        | 22          | 1      | +            |
| Benzo(a)pyrene                                         | SVOA         | 2100  |            | 25       | 200       | J       | 26        | 25          | U       | 25        | 40          | J      | +            |
| Benzo(b)fluoranthene Benzo(ghi)perylene                | SVOA         | 620   | +          | 15       | 62        | J       | 16        | 15          | U       | 15        | 16          | U      | +            |
| Benzo(k)fluoranthene                                   | SVOA         | 38    | U          | 38       | 40        | U       | 40        | 39          | U       | 39        | 39          | U      | T            |
| Bis(2-chloro-1-methylethyl)ether                       | SVOA         | 22    | U          | 22       | 23        | U       | 23        | 22          | U       | 22        | 22          | U      |              |
| Bis(2-Chloroethoxy)methane                             | SVOA         | 22    | U          | 22       | 23        | U       | 23        | 22          | U       | 22        | 22          | U      |              |
| Bis(2-chloroethyl) ether                               | SVOA         | 16    | U          | 16       | 16        | U       | 16        | 16          | U       | 16        | 16          | U      |              |
| Bis(2-ethylhexyl) phthalate                            | SVOA         | 44    | U          | 44       | 46        | U       | 46        | 44          | U       | 44        | 45          | U      |              |
| Butylbenzylphthalate                                   | SVOA         | 41    | U          | 41       | 43        | U       | 43        | 41          | U       | 41        | 42          | U      |              |
| Carbazole                                              | SVOA         | 570   |            | 34       | 42        | J       | 36        | 35          | U       | 35        | 35          | U      |              |
| Chrysene                                               | SVOA         | 1800  |            | 26       | 170       | J       | 27        | 26          | U       | 26        | 26          | U      |              |
| Dibenz[a,h]anthracene                                  | SVOA         | 160   | J          | 18       | 19        | J       | 19        | 18          | U       | 18        | 18          | U      | 1            |
| Dibenzofuran                                           | SVOA         | 340   |            | 19       | 53        | J       | 20        | 19          | U       | 19        | 19          | U      |              |
| Diethyl phthalate                                      | SVOA         | 25    | U          | 25       | 26        | U       | 26        | 25          | U       | 25        | 25          | U      | 1            |
| Dimethyl phthalate                                     | SVOA         | 22    | U          | 22       | 23        | U       | 23        | 22          | U       | 22        | 22          | U      | 1            |
| Di-n-butylphthalate                                    | SVOA         | 28    | U          | 28       | 29        | U       | 29        | 28          | U       | 28        | 28          | U      | -            |
| Di-n-octylphthalate                                    | SVOA         | 14    | U          | 14       | 14        | U       | 14        | 14          | U       | 14        | 14          | U      | +            |
| Fluoranthene                                           | SVOA         | 3700  |            | 34       | 340       | -       | 36        | 35          | U       | 35        | 35          | U      | +            |
| Fluorene                                               | SVOA         | 580   | 1          | 17       | 64        | J       | 18        | 17          | U       | 17        | 17          | U      | +            |
| Hexachlorobenzene                                      | SVOA         | 28    | U          | 28       | 29        | U       | 29        | 28          | U       | 28        | 28          | U      | +            |
| Hexachlorobutadiene                                    | SVOA         | 9.6   | U          | 9.6      | 9.9       | U       | 9.9       | 9.6         | U       | 9.6       | 9.7         | U      | +            |
| Hexachlorocyclopentadiene                              | SVOA         | 48    | U          | 48       | 50        | U       | 50        | 48          | U       | 48        | 49          | U      | +            |
| Hexachloroethane                                       | SVOA         | 20    | U          | 20       | 21        | U       | 21        | 21          | U       | 21        | 21          | U      | +            |
| Indeno(1,2,3-cd)pyrene                                 | SVOA         | 550   | **         | 21       | 47        | J       | 22        | 16          | U       | 16        | 17          | U      | +            |
| Isophorone                                             | SVOA         | 16    | U          | 16<br>30 | 31        | U       | 31        | 30          | U       | 30        | 30          | U      | +            |
| Naphthalene                                            | SVOA         | 170   | J          | 21       | 22        | U       | 22        | 21          | U       | 21        | 21          | U      | +            |
| Nitrobenzene                                           | SVOA         | 30    | U          | 30       | 31        | U       | 31        | 30          | U       | 30        | 30          | U      | +            |
| N-Nitroso-di-n-dipropylamine<br>N-Nitrosodiphenylamine | SVOA         | 20    | U          | 20       | 21        | U       | 21        | 20          | U       | 20        | 20          | U      | +            |
| N-Nitrosodiphenylamine<br>Pentachlorophenol            | SVOA         | 320   | U          | 320      | 330       | U       | 330       | 320         | U       | 320       | 320         | U      | +            |
| - April Of Marie                                       | SVOA         | 3900  | -          | 16       | 360       | 1       | 17        | 16          | U       | 16        | 17          | U      | +            |
|                                                        |              |       | 1          |          |           | FT      | 18        | 17          | U       | 17        | 17          | U      | +            |
| Phenanthrene                                           | SVOA         | 17    | 111        | 1/       | I X       | 1 1     |           |             |         |           | 11          |        |              |
| Phenanthrene Phenol Pyrene                             | SVOA<br>SVOA | 2900  | U          | 17       | 18        | J       | 12        | 12          | U       | 12        | 38          | J      | $^{\dagger}$ |

Remaining Sites Verification Package for the 100-D-62, 183-DR Head House Septic Tank; 100-D-77, 183-DR Water Treatment Facility; and 100-D-83:1, 183-DR Acid Addition Pipelines Waste Sites

Rev. No.

J. D. Skoglie

0100D-CA-V0508

Checked

Calc. No.

|                                         |              | J1R       | 77, EX  | C-4       | J1PV     | V85, EX  | C-5       | J1PV      | V86, EX | C-6       | J1PW87, EXC-7   |        |             |  |
|-----------------------------------------|--------------|-----------|---------|-----------|----------|----------|-----------|-----------|---------|-----------|-----------------|--------|-------------|--|
| CONSTITUENT                             | CLASS        | 3/        | /15/201 | 3         | 9.       | /18/2012 | 2         | 9/        | 18/201: | 2         | 9/              | 18/201 | 2           |  |
| _                                       | l            | ug/kg     | Q       | PQL       | ug/kg    | Q        | PQL       | ug/kg     | Q       | PQL       | ug/kg           | Q      | PQL         |  |
| 1.2,4-Trichlorobenzene                  | SVOA         | 28        | U       | 28        | 27       | Ū        | 27        | 28        | U       | 28        | 28              | U      | 28_         |  |
| 1,2-Dichlorobenzene                     | SVOA         | 22        | U       | 22        | 21       | U        | 21        | 22        | U       | 22        | 22              | U      | 22          |  |
| 1,3-Dichlorobenzene                     | SVOA         | 12        | U       | 12        | 12       | บ        | 12        | 12        | U       | 12        | 12              | U      | 12          |  |
| 1.4-Dichlorobenzene                     | SVOA         | 14        | U       | 14        | 13       | U        | 13        | 13        | U       | 13        | 13              | U      | 13          |  |
| 2.4.5-Trichlorophenol                   | SVOA         | 10        | U       | 10        | 9.7      | U        | 9.7       | 9.9       | Ü       | 9,9       | 9.9             | U      | 9.9         |  |
| 2,4,6-Trichlorophenol                   | SVOA         | 10        | U       | 10        | 9.7      | U        | 9.7       | 9.9       | U       | 9.9       | 9.9             | U      | 9.9         |  |
| 2,4-Dichlorophenol                      | SVOA         | 10        | U       | 10        | 9.7      | U        | 9.7       | 9.9       | U       | 9.9       | 9.9             | U<br>U | 9.9         |  |
| 2,4-Dimethylphenol 2,4-Dinitrophenol    | SVOA<br>SVOA | 67<br>340 | U       | 67<br>340 | 320      | UJ       | 64<br>320 | 65<br>330 | UXJ     | 65<br>330 | 65<br>330       | UJ     | 330         |  |
| 2,4-Dinitrophenoi 2,4-Dinitrotoluene    | SVOA         | 67        | Ü       | 67        | 64       | Ü        | 64        | 65        | U       | 65        | 65              | U      | 65          |  |
| 2,6-Dinitrotoluene                      | SVOA         | 28        | U -     | 28        | 27       | Ū        | 27        | 28        | U       | 28        | 28              | U      | 28          |  |
| 2-Chloronaphthalene                     | SVOA         | 10        | U       | 10        | 9.7      | Ü        | 9.7       | 9.9       | U       | 9.9       | 9.9             | U      | 9.9         |  |
| 2-Chlorophenol                          | SVOA         | 21        | Ü       | 21        | 20       | Ü        | 20        | 21        | U       | 21        | 21              | U      | 21          |  |
| 2-Methylnaphthalene                     | SVOA         | 19        | Ü       | 19        | 18       | บ        | 18        | 19        | Ü       | 19        | 19              | U      | 19          |  |
| 2-Methylphenol (cresol, o-)             | SVOA         | 13        | Ū       | 13        | 13       | U        | 13        | 13        | Ü       | 13        | 13              | Ü      | 13          |  |
| 2-Nitroaniline                          | SVOA         | 51        | Ü       | 51        | 48       | Ū        | 48        | 49        | Ū       | 49        | 49              | Ü      | 49          |  |
| 2-Nitrophenol                           | SVOA         | 10        | Ū       | 10        | 9.7      | Ü        | 9.7       | 9.9       | Ū       | 9.9       | 9.9             | U      | 9.9         |  |
| 3,3'-Dichlorobenzidine                  | SVOA         | 91        | U       | 91        | 87       | UJ       | 87        | 89        | UJ      | 89        | 89              | UJ     | 89          |  |
| 3+4 Methylphenol (cresol, m+p)          | SVOA         | 34        | U       | 34        | 32       | U        | 32        | 33        | U       | 33        | 33              | U      | 33          |  |
| 3-Nitroaniline                          | SVOA         | 74        | U       | 74        | 71       | U        | 71        | 72        | U       | 72        | 72              | U      | 72          |  |
| 4,6-Dinitro-2-methylphenol              | SVOA         | 340       | U       | 340       | 320      | UJ       | 320       | 330       | UXJ     | 330       | 330             | UJ     | 330         |  |
| 4-Bromophenylphenyl ether               | SVOA         | 19        | υ       | 19        | 18       | U        | 18        | 19        | U       | 19        | 19              | U      | 19          |  |
| . 4-Chloro-3-methylphenol               | SVOA         | 67        | U       | 67        | 64       | U        | 64        | 65        | U       | 65        | 65              | U      | 65          |  |
| 4-Chloroaniline                         | SVOA         | 83        | U       | 83        | 79       | U        | 79        | 81        | U       | 81        | 81              | U      | 81          |  |
| 4-Chlorophenylphenyl ether              | SVOA         | 21        | U       | 21        | 20       | U        | 20        | 21        | U       | 21        | 21              | U      | 21          |  |
| 4-Nitroaniline                          | SVOA         | 74        | U       | 74        | 70       | U        | 70        | 71        | U       | 71        | 71              | U      | 71          |  |
| 4-Nitrophenol                           | SVOA_        | 99        | U       | 99        | 94       | U        | 94        | 96        | U       | 96        | 96              | U      | 96          |  |
| Acenaphthene                            | SVOA         | 10        | U       | 10        | 10       | U        | 10        | 10        | U       | 10        | 10              | U      | 10          |  |
| Acenaphthylene                          | SVOA         | 17        | U       | 17        | 16       | U        | 16        | 17        | U       | 17        | 17              | U      | 17          |  |
| Anthracene                              | SVOA         | 17        | U       | 17        | 16       | U        | 16        | 17        | U       | 17        | 17              | U      | 17          |  |
| Benzo(a)anthracene                      | SVOA         | 42        | ı       | 20        | 49       | J        | 19        | 20        | U       | 20        | 20              | U      | 20          |  |
| Benzo(a)pyrene                          | SVOA         | 36<br>68  | JX      | 20        | 47<br>79 | ]        | 19<br>25  | 20_       | U       | 20<br>26  | 20              | U      | 20          |  |
| Benzo(b)fluoranthene                    | SVOA         | 20        | JA      | 16        | 32       | 1        | 15        | 16        | U       | 16        | 16              | U      | 16          |  |
| Benzo(ghi)perylene Benzo(k)fluoranthene | SVOA         | 41        | UX      | 41        | 39       | Ü        | 39        | 39        | U       | 39        | 39              | U      | 39          |  |
| Bis(2-chloro-1-methylethyl)ether        | SVOA         | 23        | U       | 23        | 22       | Ü        | 22        | 23        | Ü       | 23        | 23              | U      | 23          |  |
| Bis(2-Chloroethoxy)methane              | SVOA         | 23        | U       | 23        | 22       | Ü        | 22        | 23        | Ü       | 23        | 23              | U      | 23          |  |
| Bis(2-chloroethyl) ether                | SVOA         | 17        | U       | 17        | 16       | U        | 16        | 16        | Ü       | 16        | 16              | U      | 16          |  |
| Bis(2-ethylhexyl) phthalate             | SVOA         | 47        | U       | 47        | 45       | U        | 45        | 45        | Ü       | 45        | 45              | U      | 45          |  |
| Butylbenzylphthalate                    | SVOA         | 44        | U       | 44        | 42       | Ū        | 42        | 42        | Ū       | 42        | 42              | Ü      | 42          |  |
| Carbazole                               | SVOA         | 37        | U       | 37        | 35       | Ū        | 35        | 35        | Ü       | 35        | 35              | U      | 35          |  |
| Chrysene                                | SVOA         | 50        | J       | 27        | 42       | J        | 26        | 27        | U       | 27        | 27              | U      | 27          |  |
| Dibenz[a,h]anthracene                   | SVOA         | 19        | U       | 19        | 18       | Ū        | 18        | 19        | Ū       | 19        | 19              | U      | 19          |  |
| Dibenzofuran                            | SVOA         | 20        | U       | 20        | 19       | U        | 19        | 20        | U       | 20        | 20              | υ      | 20          |  |
| Diethyl phthalate                       | SVOA         | 26        | U       | 26        | 25       | Ü        | 25        | 26        | U       | 26        | 26              | U      | 26          |  |
| Dimethyl phthalate                      | SVOA         | 23        | U       | 23        | 22       | U        | 22        | 23        | U       | 23        | 23              | U      | 23          |  |
| Di-n-butylphthalate                     | SVQA         | 29        | U       | 29        | 28       | U        | 28        | 29        | U       | 29        | 29              | U      | 29          |  |
| Di-n-octylphthalate                     | SVOA         | 15        | U       | 15        | 14       | U        | 14        | 14        | U       | 14        | 14              | U      | 14          |  |
| Fluoranthene                            | SVOA         | 81        | J       | 37        | 79       | J        | 35        | 35        | U       | 35        | 35              | U      | 35          |  |
| Fluorene                                | SVOA         | 18        | U       | 18        | 17       | U        | 17        | 18        | U       | 18        | 18              | U      | 18          |  |
| Hexachiorobenzene                       | SVOA         | 29        | U       | 29        | 28       | U        | 28        | 29        | ע       | 29        | 29              | U      | 29          |  |
| Hexachlorobutadiene                     | SVOA         | 10        | U       | 10        | 9.7      | U        | 9.7       | 9.9       | U       | 9.9       | 9.9             | U      | 9.9         |  |
| Hexachlorocyclopentadiene               | SVOA         | 51        | U       | 51        | 48 _     | U        | 48        | 49        | บ       | 49        | 49              | U      | 49          |  |
| Hexachloroethane                        | SVOA         | 22        | U       | 22        | 21       | U        | 21        | 21        | U       | 21        | 21              | U      | 21          |  |
| Indeno(1,2,3-cd)pyrene                  | SVOA         | 22        | U       | 22        | 24       | J        | 21        | 22        | U       | 22        | 22              | U      | 22          |  |
| Isophorone                              | SVOA         | 17        | U       | 17_       | 16       | U        | 16        | 17        | U       | 17        | 17              | U      | 17          |  |
| Naphthalene                             | SVOA         | 32        | U       | 32        | 30       | U        | 30        | 31        | U       | 31        | 31              | U      | 31          |  |
| Nitrobenzene                            | SVOA         | 22        | U       | 22        | 21       | U        | 21        | 22        | U       | 22        | 22              | U      | 22          |  |
| N-Nitroso-di-n-dipropylamine            | SVOA         | 32        | U       | 32        | 30       | U        | 30        | 31        | U       | 31        | 31              | U      | 31          |  |
| N-Nitrosodiphenylamine                  | SVOA         | 21        | L T     | 21        | 20       | U        | 20        | 21        | U       | 21        | 21              | U      | 21          |  |
| Pentachlorophenol                       | SVOA         | 340       | U       | 340       | 320      | U        | 320       | 330       | U       | 330       | 330             | U      | 330         |  |
| Phenanthrene                            | SVOA         | 39        | J       | 17        | 39       | J        | 16        | 17        | U       | 17        | 17              | U      | 17          |  |
| Phenol                                  | SVOA         | 18        | U       | 18        | 17       | U -      | 17        | 18        | U       | 18        | 18              | U      | 18          |  |
| Pyrene                                  | SVOA         | 76        | J       | 12        | 73       | Jachment |           | 12        | U       | 12        | 12<br>Sheet No. | U      | 12<br>of 31 |  |

Attachment 1 Sheet No. 20 of 31

Originator N. K. Schiffern Date 07/08/13

Checked J. D. Skoglie Date 07/08/13

Calc. No. 0100D-CA-V0508 Rev. No. 0

| Attachment 1.                                   | 100-D-77, 100-I | <i>)</i> -62, and 1 | -62, and 100-D-83:1 Waste Sites Verification Sample Results (Organics). |          |          |          |          |          |        |          |                 |         |          |
|-------------------------------------------------|-----------------|---------------------|-------------------------------------------------------------------------|----------|----------|----------|----------|----------|--------|----------|-----------------|---------|----------|
|                                                 |                 | J1PV                | V88, EX                                                                 | C-8      | J1PV     | V89, EX  | C-9      | J1PW     | 90, EX | C-10     | J1PW            | 91, EX  | C-11     |
| CONSTITUENT                                     | CLASS           | 9,                  | 18/201                                                                  |          | 9/       | /18/2012 | 2        | 9/       | 18/201 | 2        | 9/              | 18/2012 | 2        |
|                                                 |                 | ug/kg               | Q                                                                       | PQL      | ug/kg    | Q        | PQL      | ug/kg    | Q      | PQL      | ug/kg           | Q       | PQL      |
| 1,2,4-Trichlorobenzene                          | SVOA            | 28                  | บ                                                                       | 28       | 27       | U        | 27       | 26       | U      | 26       | 27              | U       | 27       |
| 1,2-Dichlorobenzene                             | SVOA            | 22                  | U                                                                       | 22       | 21       | U        | 21       | 21       | U      | 21       | 22              | U       | 22       |
| 1,3-Dichlorobenzene                             | SVOA            | 12                  | Ü                                                                       | 12       | 12       | U<br>U   | 12       | 11       | U      | 11       | 12              | U       | 12       |
| 1,4-Dichlorobenzene<br>2,4,5-Trichlorophenol    | SVOA<br>SVOA    | 14                  | U                                                                       | 14       | 9.7      | U        | 9.7      | 9.4      | Ü      | 9.4      | 9.8             | U       | 9.8      |
| 2,4,6-Trichlorophenol                           | SVOA            | 10                  | Ü                                                                       | 10       | 9.7      | U        | 9.7      | 9.4      | U      | 9.4      | 9.8             | Ü       | 9.8      |
| 2,4-Dichlorophenol                              | SVOA            | 10                  | U                                                                       | 10       | 9.7      | U        | 9.7      | 9.4      | Ū      | 9.4      | 9.8             | U       | 9.8      |
| 2,4-Dimethylphenol                              | SVOA            | 67                  | U                                                                       | 67       | 64       | U        | 64       | 62       | U      | 62       | 65              | U       | 65       |
| 2,4-Dinitrophenol                               | SVOA            | 340                 | UJ                                                                      | 340      | 320      | UJ       | 320      | 310      | UJ     | 310      | 330             | IJ      | 330      |
| 2,4-Dinitrotoluene                              | SVOA            | 67                  | U                                                                       | 67       | 64       | U        | 64       | · 62     | U      | 62       | 65              | U       | 65       |
| 2,6-Dinitrotoluene                              | SVOA            | 28                  | U                                                                       | 28       | 27       | U        | 27       | 26       | U      | 26       | 27              | Ŭ       | 27       |
| 2-Chloronaphthalene                             | SVOA            | 10                  | U                                                                       | 10       | 9.7      | U        | 9.7      | 9.4      | U      | 9.4      | 9.8             | U       | 9.8      |
| 2-Chlorophenol                                  | SVOA            | 21<br>19            | U                                                                       | 21<br>19 | 20<br>18 | U        | 20       | 20<br>18 | U      | 20<br>18 | 21<br>19        | U       | 21<br>19 |
| 2-Methylnaphthalene 2-Methylphenol (cresol, o-) | SVOA            | 13                  | U                                                                       | 13       | 13       | U        | 13       | 12       | U      | 12       | 13              | U       | 13       |
| 2-Nitroaniline                                  | SVOA            | 51                  | Ü                                                                       | 51       | 48       | Ü        | 48       | 47       | U      | 47       | 49              | U       | 49       |
| 2-Nitrophenol                                   | SVOA            | 10                  | U                                                                       | 10       | 9.7      | Ü        | 9.7      | 9,4      | Ū      | 9.4      | 9.8             | U       | 9.8      |
| 3,3'-Dichlorobenzidine                          | SVOA            | 91                  | UJ                                                                      | 91       | 87       | UJ       | 87       | 85       | UJ     | 85       | 88              | UJ      | 88       |
| 3+4 Methylphenol (cresol, m+p)                  | SVOA            | 33                  | U                                                                       | 33       | 32       | U        | 32       | 31       | U      | 31       | 32              | U       | 32       |
| 3-Nitroaniline                                  | SVOA            | 74                  | U                                                                       | 74       | 71       | U        | 71       | 69       | U      | 69       | 71              | U       | 71       |
| 4,6-Dinitro-2-methylphenol                      | SVOA            | 330                 | UJ                                                                      | 330      | 320      | UJ       | 320      | 310      | UJ     | 310      | 320             | บูเ     | 320      |
| 4-Bromophenylphenyl ether                       | SVOA            | 19                  | U                                                                       | 19       | 18       | U        | 18       | 18       | U      | 18       | 19              | U<br>U  | 19<br>65 |
| 4-Chloro-3-methylphenol                         | SVOA SVOA       | 67<br>83            | U                                                                       | 67<br>83 | 64<br>79 | U        | 64<br>79 | 62<br>77 | U      | 62<br>77 | 65<br>80        | U       | 80       |
| 4-Chloroaniline 4-Chlorophenylphenyl ether      | SVOA            | 21                  | U                                                                       | 21       | 20       | U        | 20       | 20       | Ū      | 20       | 21              | U       | 21       |
| 4-Nitroaniline                                  | SVOA            | 74                  | Ü                                                                       | 74       | 70       | U        | 70       | 68       | υ      | 68       | 71              | U       | 71       |
| 4-Nitrophenol                                   | SVOA            | 98                  | Ü                                                                       | 98       | 94       | Ü        | 94       | 91       | Ŭ      | 91       | 95              | U       | 95       |
| Acenaphthene                                    | SVOA            | 10                  | U                                                                       | 10       | 10       | U        | 10       | 9.7      | U      | 9.7      | 10              | U       | 10       |
| Acenaphthylene                                  | SVOA            | 17                  | Ü                                                                       | 17       | 16       | U        | 16       | 16       | U      | 16       | 17              | U       | 17_      |
| Anthracene                                      | SVOA            | 17                  | U                                                                       | 17       | 16       | U        | 16       | 16       | U      | 16       | 17              | U       | 17       |
| Benzo(a)anthracene                              | SVOA            | 20                  | U                                                                       | 20       | 19       | U        | 19_      | 19       | U      | 19       | 20              | U       | 20       |
| Benzo(a)pyrene                                  | SVOA            | 20<br>27            | U                                                                       | 20       | 19<br>25 | U        | 19       | 19<br>25 | U      | 19<br>25 | 20              | U       | 20       |
| Benzo(b)fluoranthene                            | SVOA<br>SVOA    | 16                  | U                                                                       | 27<br>16 | 15       | U        | 15       | 15       | U      | 15       | 16              | U       | 16       |
| Benzo(ghi)perylene Benzo(k)fluoranthene         | SVOA            | 41                  | U                                                                       | 41       | 39       | Ü        | 39       | 38       | U      | 38       | 39              | U       | 39       |
| Bis(2-chloro-1-methylethyl)ether                | SVOA            | 23                  | U                                                                       | 23       | 22       | U        | 22       | 22       | Ü      | 22       | 22              | Ū       | 22       |
| Bis(2-Chloroethoxy)methane                      | SVOA            | 23                  | U                                                                       | 23       | 22       | U        | 22       | 22       | Ü      | 22       | 22              | U       | 22       |
| Bis(2-chloroethyl) ether                        | SVOA            | 17                  | U                                                                       | 17       | 16       | U        | 16       | 16       | U      | 16       | 16              | U       | 16       |
| Bis(2-ethylhexyl) phthalate                     | SVOA            | 47                  | U                                                                       | 47       | 44       | U        | 44       | 43       | Ü      | 43       | 45              | U       | 45       |
| Butylbenzylphthalate                            | SVOA            | 44                  | Ŭ                                                                       | 44       | 42       | U        | 42       | 41       | U      | 41       | 42              | U       | 42       |
| Carbazole                                       | SVOA            | 37                  | U                                                                       | 37       | 35       | U        | 35       | 34       | U      | 34       | 35              | U       | 35       |
| Chrysene                                        | SVOA            | 27                  | U                                                                       | 27       | 26       | U        | 26       | 25       | U      | 25<br>18 | 26<br>19        | U       | 19       |
| Dibenz[a,h]anthracene                           | SVOA<br>SVOA    | 19<br>20            | U                                                                       | 19       | 18<br>19 | U        | 18       | 18       | U      | 19       | 20              | U       | 20       |
| Dibenzofuran  Diethyl phthalate                 | SVOA            | 26                  | U                                                                       | 26       | 25       | U        | 25       | 25       | U      | 25       | 25              | U       | 25       |
| Dimethyl phthalate                              | SVOA            | 23                  | Ü                                                                       | 23       | 22       | Ŭ        | 22       | 22       | Ŭ      | 22       | 22              | U       | 22       |
| Di-n-butylphthalate                             | SVOA            | 29                  | Ū                                                                       | 29       | 28       | Ü        | 28       | 27       | U      | 27       | 28              | U       | 28       |
| Di-n-octylphthalate                             | SVOA            | 15                  | U                                                                       | 15       | 14       | U        | 14       | 14       | U      | 14       | 14              | U       | 14       |
| Fluoranthene                                    | SVOA            | 37                  | U                                                                       | 37       | 35       | U        | 35       | 34       | U      | 34       | 35              | U       | 35       |
| Fluorene                                        | SVOA            | 18                  | U                                                                       | 18       | 17       | U        | 17       | 17       | U      | 17       | 18              | U       | 18       |
| Hexachlorobenzene                               | SVOA            | 29                  | U                                                                       | 29       | 28       | U        | 28       | 27       | U      | 27       | 28              | U       | 28       |
| Hexachlorobutadiene                             | SVOA            | 10                  | U                                                                       | 10       | 9.7      | U        | 9.7      | 9.4      | U      | 9.4      | 9.8             | U       | 9.8      |
| Hexachlorocyclopentadiene                       | SVOA            | 51<br>22            | U                                                                       | 22       | 48       | U        | 48<br>21 | 47<br>20 | U      | 20       | 49<br>21        | U       | 21       |
| Hexachloroethane Indeno(1,2,3-cd)pyrene         | SVOA<br>SVOA    | 22                  | U                                                                       | 22       | 21       | U        | 21       | 21       | U      | 21       | 22              | U       | 22       |
| Isophorone                                      | SVOA            | 17                  | U                                                                       | 17       | 16       | U        | 16       | 16       | U      | 16       | 17              | U       | 17       |
| Naphthalene                                     | SVOA            | 31                  | U                                                                       | 31       | 30       | υ        | 30       | 29       | Ü      | 29       | 30              | Ü       | 30       |
| Nitrobenzene                                    | SVOA            | 22                  | U                                                                       | 22       | 21       | U        | 21       | 21       | Ü      | 21       | 22              | U       | 22       |
| N-Nitroso-di-n-dipropylamine                    | SVOA            | 31                  | Ŭ                                                                       | 31       | 30       | U        | 30       | 29       | U      | 29       | 30              | U       | 30       |
| N-Nitrosodiphenylamine                          | SVOA            | 21                  | U                                                                       | 21       | 20       | U        | 20       | 20       | U      | 20       | 21              | U       | 21       |
| Pentachlorophenol                               | SVOA            | 330                 | U                                                                       | 330      | 320      | U        | 320      | 310      | U      | 310      | 320             | U       | 320      |
| Phenanthrene                                    | SVOA            | 17                  | U                                                                       | 17       | 16       | U        | 16       | 16       | U      | 16       | 17              | U       | 17       |
| Phenol                                          | SVOA            | 18                  | U                                                                       | 18       | 17       | U        | 17       | 17       | U      | 17       | 18              | U       | 18       |
| Pyrene                                          | SVOA            | 12                  | U                                                                       | 12       | 12       | U        | 12       | 11       | U      | 11       | 12<br>Sheet No. | U 21    | 12       |

Remaining Sites Verification Package for the 100-D-62, 183-DR Head House Septic Tank; 100-D-77, 183-DR Water Treatment Facility; and 100-D-83:1, 183-DR Acid Addition Pipelines Waste Sites

Originator

Checked

Calc. No.

N. K. Schiffern

J. D. Skoglie

0100D-CA-V0508

Date 07/08/13

07/08/13

Date

Rev. No.

|                                                       | 100-D-77, 100-1 |            | 92, EX | _               | J1PWF8,    |              |            |          | 45, SP |          | J1R653,   | Dupli<br>LR645 | cate of       |
|-------------------------------------------------------|-----------------|------------|--------|-----------------|------------|--------------|------------|----------|--------|----------|-----------|----------------|---------------|
| CONSTITUENT                                           | CLASS           | 9,         | 18/201 | 2               | 9/         | 18/2012      |            | 4/       | 8/2013 | 3        |           | 8/2013         |               |
|                                                       |                 | ug/kg      | Q      | PQL             | ug/kg      | Q            | PQL        | ug/kg    | Q      | PQL      | ug/kg     | Q              | PQL           |
| 1,2,4-Trichlorobenzene                                | SVOA            | 27         | U      | 27              | 648        | UD           | 648        | 29       | U      | 29       | 29        | U              | 29            |
| 1,2-Dichlorobenzene                                   | SVOA            | 22         | U      | 22_             | 648        | UD           | 648        | 23       | U      | 23       | 22        | U              | 22            |
| 1,3-Dichlorobenzene                                   | SVOA            | 12         | U      | 12              | 648        | UD           | 648        | 12       | U      | 12       | 12        | U              | 12            |
| 1,4-Dichlorobenzene                                   | SVOA            | 13         | U      | 9.8             | 648<br>648 | UD           | 648<br>648 | 14       | U      | 14<br>10 | 14<br>10  | U              | 10            |
| 2.4.5-Trichlorophenol                                 | SVOA            | 9.8<br>9.8 | U      | 9.8             | 648        | UD           | 648        | 10       | Ü      | 10       | 10        | บ              | 10            |
| 2,4,6-Trichlorophenol 2,4-Dichlorophenol              | SVOA            | 9.8        | U      | 9.8             | 648        | UD           | 648        | 10       | Ŭ      | 10       | 10        | Ü              | 10            |
| 2,4-Dimethylphenol                                    | SVOA            | 65         | Ü      | 65              | 648        | UD           | 648        | 68       | U      | 68       | 67        | U              | 67            |
| 2,4-Dinitrophenol                                     | SVOA            | 330        | UJ     | 330             | 3240       | שט           | 3240       | 340      | U      | 340      | 340       | U              | 340           |
| 2,4-Dinitrotoluene                                    | SVOA            | 65         | U      | 65              | 648        | UD           | 648        | 68       | U      | 68       | 67        | U              | 67            |
| 2,6-Dinitrotoluene                                    | SVOA            | 27         | U      | 27              | 648        | UD_          | 648        | 29       | U      | 29       | 29        | U              | 29            |
| 2-Chloronaphthalene                                   | SVOA            | 9.8        | U      | 9.8             | 648        | UD           | 648        | 10       | U      | 10<br>22 | 10<br>21  | U              | 21            |
| 2-Chlorophenol                                        | SVOA            | 21         | U      | 21 <sup>-</sup> | 648<br>648 | UD           | 648<br>648 | 22<br>19 | U      | 19       | 19        | U              | 19            |
| 2-Methylnaphthalene                                   | SVOA<br>SVOA    | 19         | U      | 13              | 648        | UD           | 648        | 13       | U      | 13       | 13        | Ü              | 13            |
| 2-Methylphenol (cresol, o-) 2-Nitroaniline            | SVOA            | 49         | U      | 49              | 3240       | UD           | 3240       | 51       | Ū      | 51       | 51        | Ü              | 51            |
| 2-Nitrophenol                                         | SVOA            | 9.8        | บ      | 9.8             | 648        | UD           | 648        | 10       | Ū      | 10       | 10        | U              | 10            |
| 3,3'-Dichlorobenzidine                                | SVOA            | 88         | UJ     | 88              | 1300       | UD           | 1300       | 92       | U      | 92       | 92        | U              | 92            |
| 3+4 Methylphenol (cresol, m+p)                        | SVOA            | 32         | U      | 32              | 648        | UD           | 648        | 34       | U      | 34       | 34        | U              | 34            |
| 3-Nitroaniline                                        | SVOA            | 71         | U      | 71              | 3240       | UD           | 3240       | 75       | U      | 75       | 75        | Ü              | 75            |
| 4,6-Dinitro-2-methylphenol                            | SVOA            | 320        | UJ     | 320             | 648        | UD           | 648        | 340      | U      | 340      | 340       | U              | 340           |
| 4-Bromophenylphenyl ether                             | SVOA            | 19         | U      | 19              | 648        | UD           | 648        | 19       | Ū      | 19       | 19        | U              | 19            |
| 4-Chloro-3-methylphenol                               | SVOA            | 65         | U      | 65              | 648        | UD           | 648        | 68<br>84 | U      | 68<br>84 | 67<br>84  | U              | 67<br>84      |
| 4-Chloroaniline                                       | SVOA            | 80<br>21   | U      | 80              | 648<br>648 | UD           | 648<br>648 | 22       | U      | 22       | 21        | U              | 21            |
| 4-Chlorophenylphenyl ether 4-Nitroaniline             | SVOA            | 71         | U      | 71              | 3240       | UD           | 3240       | 74       | U      | 74       | 74        | U              | 74            |
| 4-Nitrophenol                                         | SVOA            | 95         | U      | 95              | 3240       | UD           | 3240       | 99       | Ū      | 99       | 99        | U              | 99            |
| Acenaphthene                                          | SVOA            | 10         | Ü      | 10              | 648        | UD           | 648        | 11       | Ū      | 11       | 11        | U              | 11            |
| Acenaphthylene                                        | SVOA            | 17         | U      | 17              | 648        | UD           | 648        | 17       | U      | 17       | 17        | U              | 17            |
| Anthracene                                            | SVOA            | 17         | U      | 17              | 107        | JD           | 648        | 17       | U      | 17       | 17        | U_             | 17            |
| Benzo(a)anthracene                                    | SVOA            | 20         | U      | 20              | 312        | DJ           | 648        | 21       | U      | 21       | 20        | U              | 20            |
| Benzo(a)pyrene                                        | SVOA            | 20         | U      | 20              | 182        | 1 D          | 648        | 21       | U_     | 21       | 20        | U              | 20            |
| Benzo(b)fluoranthene                                  | SVOA            | 26         | U      | 26              | 241        | JD           | 648        | 27       | U      | 27<br>16 | 27<br>16  | U              | 27<br>16      |
| Benzo(ghi)perylene                                    | SVOA            | 16<br>39   | U      | 16<br>39        | 148<br>232 | 1D<br>1D     | 648<br>648 | 16<br>41 | U      | 41       | 41        | Ü              | 41            |
| Benzo(k)fluoranthene Bis(2-chloro-1-methylethyl)ether | SVOA            | 22         | Ü      | 22              | 648        | UD           | 648        | 24       | Ü      | 24       | 24        | Ü              | 24            |
| Bis(2-Chloroethoxy)methane                            | SVOA            | 22         | U      | 22              | 648        | UD           | 648        | 24       | U      | 24       | 24        | U              | 24            |
| Bis(2-chloroethyl) ether                              | SVOA            | 16         | Ü      | 16              | 648        | UD           | 648        | 17       | Ü      | 17       | 17        | U              | 17            |
| Bis(2-ethylhexyl) phthalate                           | SVOA            | 45         | U      | 45              | 648        | UD           | 648        | 47       | U      | 47       | 47        | U              | 47            |
| Butylbenzylphthalate                                  | SVOA            | 42         | U      | 42              | 648        | UD           | 648        | 44       | U      | 44       | 44        | U              | 44            |
| Carbazole                                             | SVOA            | 35         | U      | 35              | 648        | UD           | 648        | 37       | U      | 37       | 37        | U              | 37            |
| Chrysene                                              | SVOA            | 26         | U      | 26              | 402        | JD           | 648        | 28       | U      | 28       | 28        | U              | 28            |
| Dibenz[a,h]anthracene                                 | SVOA            | 19         | U      | 19              | 648        | UD           | 648        | 19<br>21 | U      | 19<br>21 | 19<br>20  | U              | 19            |
| Dibenzofuran                                          | SVOA            | 20<br>25   | U      | 20              | 648        | JD           | 648        | 27       | U U    | 27       | 27        | U              | 27            |
| Diethyl phthalate  Dimethyl phthalate                 | SVOA            | 22         | 1 0    | 22              | 648        | UD           | 648        | 24       | Ū      | 24       | 24        | U              | 24            |
| Di-n-butylphthalate                                   | SVOA            | 28         | U      | 28              | 648        | UD           | 648        | 30       | Ü      | 30       | 30        | U              | 30            |
| Di-n-octylphthalate                                   | SVOA            | 14         | Ü      | 14              | 648        | UD           | 648        | 15       | Ū      | 15       | 15        | U              | 15            |
| Fluoranthene                                          | SVOA            | 35         | U      | 35              | 737        | D            | 648        | 37       | U      | 37       | 37        | U              | 37            |
| Fluorene                                              | SVOA            | 18         | U      | 18              | 142        | JD           | 648        | 18       | U      | 18       | 18        | U              | _ 18          |
| Hexachlorobenzene                                     | SVOA            | 28         | U      | 28              | 648        | UD           | 648        | 30       | U      | 30       | 30        | U              | _30           |
| Hexachlorobutadiene                                   | SVOA            | 9.8        | U      | 9.8             | 648        | UD           | 648        | 10       | U      | 10       | 10        | U              | 10            |
| Hexachlorocyclopentadiene                             | SVOA            | 49         | U      | 49              | 648        | UD           | 648        | 51       | U      | 51       | 51        | U              | 51            |
| Hexachloroethane                                      | SVOA            | 21         | U      | 21              | 120        | 1 D          | 648        | 22 23    | U      | 22 23    | 22        | U              | 22            |
| Indeno(1,2,3-cd)pyrene Isophorone                     | SVOA<br>SVOA    | 17         | U      | 17              | 648        | 1 DD         | 648        | 17       | U      | 17       | 17        | Ü              | 17            |
| Naphthalene                                           | SVOA            | 30         | U      | 30              | 648        | UD           | 648        | 32       | U      | 32       | 32        | ϋ              | 32            |
| Nitrobenzene                                          | SVOA            | 22         | U      | 22              | 648        | UD           | 648        | 23       | Τυ     | 23       | 22        | U              | 22            |
| N-Nitroso-di-n-dipropylamine                          | SVOA            | 30         | Ū      | 30              | 648        | UD           | 648        | 32       | U      | 32       | 32        | U              | 32            |
| N-Nitrosodiphenylamine                                | SVOA            | 21         | U      | 21              | 648        | UD           | 648        | 22       | U      | 22       | 21        | U              | 21            |
| Pentachlorophenol                                     | SVOA            | 320        | U      | 320             | 3240       | UD           | 3240       | 340      | U      | 340      | 340       | U              | 340           |
| Phenanthrene                                          | SVOA            | 17         | U      | 17              | 784        | D            | 648        | 17       | U      | 17       | 17        | U              | 17            |
| Phenol                                                | SVOA            | 18         | U      | 18              | 648        | UD           | 648        | 18       | U      | 18       | 18        | U              | 18            |
| Pyrene                                                | SVOA            | 12         | J      | 12              | 664        | D<br>achment | 648        | 12       | U      | 12       | Sheet No. | U              | 12<br>2 of 31 |

| <del>-</del>                         |              |          |         |          | e Sites Ver |          |           |             | 43, SP |                  | I1D4        | 44, SP | Δ.4          |
|--------------------------------------|--------------|----------|---------|----------|-------------|----------|-----------|-------------|--------|------------------|-------------|--------|--------------|
| CONSTITUENT                          | CLASS        |          | 541, SF |          |             | 542, SPA |           |             |        |                  |             |        |              |
| CONSTITUENT                          | CLASS        |          | 2013 14 |          |             | 2013 14: |           |             | 013 14 |                  | <u> </u>    | 013 14 |              |
| 10470-1                              | EVOA         | ug/kg    | Q       | PQL      | ug/kg       | Q        | PQL       | ug/kg<br>29 | Q<br>U | PQL<br>29        | ug/kg<br>28 | Q<br>Ü | PQ:          |
| 1,2,4-Trichlorobenzene               | SVOA         | 28       | U       | 28       | 28          | U<br>U   | 28<br>22  | 23          | U      | 23               | 22          | Ū      | 22           |
| 1,3-Dichlorobenzene                  | SVOA         | 12       | Ü       | 12       | 12          | U        | 12        | 13          | U      | 13               | 12          | U      | 12           |
| 1,4-Dichlorobenzene                  | SVOA         | 14       | U       | 14       | 14          | U        | 14        | 14          | Ü      | 14               | 14          | U      | 14           |
| 2,4,5-Trichlorophenol                | SVOA         | 10       | Ü       | 10       | 10          | Ü        | 10        | 10          | Ū      | 10               | 10          | U      | 10           |
| 2,4,6-Trichlorophenol                | SVOA         | 10       | Ü       | 10       | 10          | Ū        | 10        | 10          | U      | 10               | 10          | U      | 10           |
| 2,4-Dichlorophenol                   | SVOA         | 10       | Ü       | 10       | 10          | Ū        | 10        | 10          | U      | 10               | 10          | U      | 10           |
| 2,4-Dimethylphenol                   | SVOA         | 66       | U       | 66       | 67          | U        | 67        | 69          | U      | 69               | 66          | U      | 6            |
| 2,4-Dinitrophenol                    | SVOA         | 330      | U       | 330      | 340         | U        | 340       | 350         | U      | 350              | 330         | U      | 33           |
| 2,4-Dinitrotoluene                   | SVOA         | 66       | U       | 66       | 67          | U        | 67        | 69          | Ü      | 69               | 66          | U      | 6            |
| 2,6-Dinitrotoluene                   | SVOA         | 28       | Ü       | 28       | 28          | U        | 28        | 29          | Ŭ      | 29               | 28          | U      | 2            |
| 2-Chloronaphthalene                  | SVOA         | 10       | U       | 10       | 10          | U        | 10        | 10          | U      | 10               | 10          | U      | 1            |
| 2-Chlorophenol                       | SVOA         | 21       | U       | 21       | 21          | U        | 21        | 22          | U      | 22               | 21          | U      | 2            |
| 2-Methylnaphthalene                  | SVOA         | 19       | U       | 19       | 19          | U        | 19        | 20          | U      | 20               | 19          | U      | 1            |
| 2-Methylphenol (cresol, o-)          | SVOA         | 13       | U       | 13       | 13          | U        | 13<br>51  | 14<br>52    | U      | - 14<br>52       | 13<br>50    | U      | 5            |
| 2-Nitroaniline                       | SVOA<br>SVOA | 50<br>10 | U       | 50<br>10 | 51          | U        | 10        | 10          | U      | $-\frac{32}{10}$ | 10          | บ      | 1            |
| 2-Nitrophenol 3,3'-Dichlorobenzidine | SVOA         | 90       | U       | 90       | 91          | U        | 91        | 94          | U      | 94               | 90          | U      | · ·          |
| 3+4 Methylphenol (cresol, m+p)       | SVOA         | 33       | U       | 33       | 34          | U        | 34        | 34          | U      | 34               | 33          | U -    | 3            |
| 3-Nitroaniline                       | SVOA         | 73       | U       | 73       | 74          | U        | 74        | 76          | U      | 76               | 73          | U      | 7            |
| 4.6-Dinitro-2-methylphenol           | SVOA         | 330      | U       | 330      | 340         | U        | 340       | 340         | U      | 340              | 330         | Ü      | 3:           |
| 4-Bromophenylphenyl ether            | SVOA         | 19       | U       | 19       | 19          | U        | 19        | 20          | U      | 20               | 19          | U      | 1            |
| 4-Chloro-3-methylphenol              | SVOA         | 66       | U       | 66       | 67          | U        | 67        | 69          | U      | 69               | 66          | U      | 6            |
| 4-Chloroaniline                      | SVOA         | 82       | U       | 82       | 83          | U        | 83        | 86          | U      | 86_              | 82          | U      | 8            |
| 4-Chlorophenylphenyl ether           | SVOA         | 21       | U_      | 21       | 21          | U        | 21        | 22 _        | G      | 22               | 21          | U      | 2            |
| 4-Nitroaniline                       | SVOA         | 73       | U       | 73       | 74          | U        | 74        | 76          | U      | 76               | 72          | U      | 1 7          |
| 4-Nitrophenol                        | SVOA         | 98       | U       | 98       | 98          | U        | 98        | 100         | U      | 100              | 97          | U      | 9            |
| Acenaphthene                         | SVOA         | 10       | U       | 10       | 10          | U        | 10        | 11          | U      | 11               | 10          | U      |              |
| Acenaphthylene                       | SVOA         | 17       | U       | 17       | 17          | U        | 17        | 18 _        | U      | 18               | 17          | U      |              |
| Anthracene                           | SVOA         | 17       | U       | 17       | 17          | Ŭ<br>J   | 20        | 18<br>25    | U<br>J | 18<br>21         | 20          | U      |              |
| Benzo(a)anthracene                   | SVOA<br>SVOA | 20<br>20 | U       | 20       | 36<br>31    | J        | 20        | 23          | j      | 21               | 20          | U      | 1 2          |
| Benzo(a)pyrene Benzo(b)fluoranthene  | SVOA         | 26       | U -     | 26       | 62          | JX       | 27        | 42          | JX     | 27               | 26          | U      | + :          |
| Benzo(ghi)perylene                   | SVOA         | 16       | 10      | 16       | 23          | J        | 16        | 17          | U      | 17               | 16          | U      | + '          |
| Benzo(k)fluoranthene                 | SVOA         | 40       | T U     | 40       | 41          | UX       | 41        | 42          | UX     | 42               | 40          | Ü      | Τ.           |
| Bis(2-chloro-1-methylethyl)ether     | SVOA         | 23       | Ū       | 23       | 23          | U        | 23        | 24          | U      | 24               | 23          | Ū      | 1:           |
| Bis(2-Chloroethoxy)methane           | SVOA         | 23       | U       | 23       | 23          | Ü        | 23        | 24          | U      | 24               | 23          | U      |              |
| Bis(2-chloroethyl) ether             | SVOA         | 17       | U       | 17       | 17          | U        | 17        | 17          | U      | 17               | 17          | U      |              |
| Bis(2-ethylhexyl) phthalate          | SVOA         | 46       | U       | 46       | 47          | U        | 47        | 48          | U      | 48               | 46          | U      |              |
| Butylbenzylphthalate                 | SVOA         | 43       | U       | 43       | 44          | U_       | 44        | 45          | U      | 45               | 43          | U      | ļ.           |
| Carbazole                            | SVOA         | 36       | U       | 36       | 37          | U_       | 37        | 38          | U      | 38               | 36          | U      |              |
| Chrysene                             | SVOA         | 27       | U       | 27       | 38          | J        | 27        | 28          | U      | 28               | 27          | U      | :            |
| Dibenz[a,h]anthracene                | SVOA         | 19       | U       | 19       | 19          | U_       | 19        | 20          | U      | 20               | 19          | U      | 1            |
| Dibenzofuran                         | SVOA         | 20       | U       | 20       | 20          | U        | 20        | 21          | U      | 21               | 20          | U      | 1            |
| Diethyl phthalate                    | SVOA         | 26       | U       | 26       | 26          | U        | 26        | 27          | U      | 27               | 26          | U      | + :          |
| Dimethyl phthalate                   | SVOA         | 23       | U       | 23       | 23          | U        | 23        | 30          | U      | 30               | 23          | U      | +            |
| Di-n-butylphthalate                  | SVOA         | 14       | U       | 14       | 15          | U        | 15        | 15          | U      | 15               | 14          | U      | ╁            |
| Di-n-octylphthalate Fluoranthene     | SVOA         | 36       | U       | 36       | 61          | 1        | 37        | 44          | J      | 38               | 36          | U      | 1            |
| Fluorene                             | SVOA         | 18       | U       | 18       | 18          | U        | 18        | 19          | U      | 19               | 18          | Ü      | +            |
| Hexachlorobenzene                    | SVOA         | 29       | U       | 29       | 29          | U        | 29        | 30          | Ū      | 30               | 29          | Ū      | t            |
| Hexachlorobutadiene                  | SVOA         | 10       | Ü       | 10       | 10          | U        | 10        | 10          | U      | 10               | 10          | Ü      | 1            |
| Hexachlorocyclopentadiene            | SVOA         | 50       | U       | 50       | 51          | U        | 51        | 52          | U      | 52               | 50          | U      |              |
| Hexachloroethane                     | SVOA         | 21       | U       | 21       | 22          | U        | 22        | 22          | Ü      | 22               | 21          | U      |              |
| Indeno(1,2,3-cd)pyrene               | SVOA         | 22       | U       | 22       | 22          | Ū        | 22        | 23          | Ü      | 23               | 22          | U      |              |
| Isophorone                           | SVOA         | 17       | U       | 17       | 17          | U        | 17        | 18          | U      | 18_              | 17          | U      |              |
| Naphthaiene                          | SVOA         | 31       | U       | 31       | 31          | U        | 31        | 32          | U      | 32               | 31          | U      | ↓_           |
| Nitrobenzene                         | SVOA         | 22       | U       | 22       | 22          | U        | 22        | 23          | U      | 23               | 22          | U      | +            |
| N-Nitroso-di-n-dipropylamine         | SVOA         | 31       | U       | 31       | 31          | U        | 31        | 32          | Ü      | 32               | 31          | T.     | -            |
| N-Nitrosodiphenylamine               | SVOA         | 21       | U       | 21       | 21          | U        | 21        | 22          | U      | 22               | 21          | U      | <del> </del> |
| Pentachlorophenol                    | SVOA         | 330      | U       | 330      | 340<br>22   | U        | 340<br>17 | 340<br>22   | U      | 340<br>18        | 330         | U      | 1 3          |
| Phenanthrene                         | SVOA         | 17       | U       | 17<br>18 | 18          | U        | 18        | 19          | ı,     | 19               | 18          | U      | ╁            |
| Phenol                               | SVOA<br>SVOA | 12       | U       | 12       | 59          | 1        | 12        | 39          | J      | 13               | 12          | U      | +            |
| Pyrene                               |              |          |         |          |             |          |           |             |        |                  |             |        |              |

Remaining Sites Verification Package for the 100-D-62, 183-DR Head House Septic Tank; 100-D-77, 183-DR Water Treatment Facility; and 100-D-83:1, 183-DR Acid Addition Pipelines Waste Sites

Date

J. D. Skoglie 0100D-CA-V0508

Checked

| Attachment 1. I                       |              |          | M6, SP  |     |                                                 | M7, SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | JIRKN                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J1         | 70, Spli<br>1R645 |        |
|---------------------------------------|--------------|----------|---------|-----|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|--------|
| CONSTITUENT                           | CLASS        | 4/       | 29/2013 | 3   | 4/                                              | 29/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 4/2                           | 29/201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/8        | 8/2013            |        |
|                                       |              | ug/kg    | Q       | PQL | ug/kg                                           | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PQL                                   | ug/kg                         | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg      | Q                 | PQ     |
| 1.2,4-Trichlorobenzene                | SVOA         | 28       | U       | 28  | 28                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28                                    | 27                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 35     |
| 1,2-Dichlorobenzene                   | SVOA         | 22       | U       | 22  | 22                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                    | 21                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 35     |
| 1,3-Dichlorobenzene                   | SVOA         | 12       | U       | 12  | 12                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                    | 12                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 35     |
| 1,4-Dichlorobenzene                   | SVOA         | 14       | U       | 14  | 13                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                    | 13                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35<br>35   | U                 | 35     |
| 1,4-Dioxane                           | SVOA         | Set &    |         |     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 9.7                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35         | U                 | 35     |
| 2,4,5-Trichlorophenol                 | SVOA         | 10       | U       | 10  | 9.8                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8<br>9.8                            | 9.7                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35         | U                 | 3:     |
| 2,4,6-Trichlorophenol                 | SVOA         | 10       | U       | 10  | 9.8                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8                                   | 9.7                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35         | U                 | 3:     |
| 2,4-Dichlorophenol                    | SVOA         | 10<br>66 | U       | 10  | 9.8<br>65                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65                                    | 64                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 3      |
| 2.4-Dimethylphenol                    | SVOA<br>SVOA | 330      | U       | 330 | 330                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 330                                   | 320                           | UX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 340        | U                 | 34     |
| 2,4-Dinitrophenol                     | SVOA         | 66       | U       | 66  | 65                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65                                    | 64                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 3      |
| 2,4-Dinitrotoluene 2,6-Dinitrotoluene | SVOA         | 28       | U       | 28  | 28                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28                                    | 27                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 3      |
| 2-Chloronaphthalene                   | SVOA         | 10       | U       | 10  | 9.8                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8                                   | 9.7                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35         | U                 | 3      |
| 2-Chlorophenol                        | SVOA         | 21       | U       | 21  | 21                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                    | 20                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 3      |
| 2-Methylnaphthalene                   | SVOA         | 19       | U       | 19  | 19                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                    | 18                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 3      |
| 2-Methylphenol (cresol, o-)           | SVOA         | 13       | U       | 13  | 13                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                    | 13                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 3      |
| 2-Nitroaniline                        | SVOA         | 50       | U       | 50  | 49                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49                                    | 49                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 3      |
| 2-Nitrophenol                         | SVOA         | 10       | U       | 10  | 9.8                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8                                   | 9.7                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35         | U                 | 3      |
| 3,3'-Dichlorobenzidine                | SVOA         | 90       | U       | 90  | 89                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89                                    | 88                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 340        | U                 | 3      |
| 3+4 Methylphenol (cresol, m+p)        | SVOA         | 33       | U       | 33  | 33                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                    | 32                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69         | U                 | (      |
| 3-Nitroaniline                        | SVOA         | 73       | U       | 73  | 72                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 72                                    | 71                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| 4,6-Dinitro-2-methylphenol            | SVOA         | 330      | U       | 330 | 330                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 330                                   | 320                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 340        | U                 | 3      |
| 4-Bromophenylphenyl ether             | SVOA         | 19       | U       | 19  | 19                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                    | 18                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| 4-Chloro-3-methylphenol               | SVOA         | 66       | U       | 66  | 65                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65                                    | 64                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| 4-Chloroaniline                       | SVOA         | 82       | U       | 82  | 81                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 81                                    | 80                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| 4-Chlorophenylphenyl ether            | SVOA         | 21       | U       | 21  | 21                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                    | 20                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 3      |
| 4-Nitroaniline                        | SVOA         | 73       | U       | 73  | 71                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71                                    | 71                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 340<br>340 | U                 | 3      |
| 4-Nitrophenol                         | SVOA         | 97       | U       | 97  | 96                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96                                    | 94                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | -3     |
| Acenaphthene                          | SVOA         | 10       | U       | 10  | 10                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                    | 17                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Acenaphthylene                        | SVOA         | 17       | U       | 17  | 17                                              | C CONTINUES OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | And the Control of the Control of the | 90 - 200 200 5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M-02/602/85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62         | U                 |        |
| Aniline                               | SVOA         | 17       | U       | 17  | 17                                              | Ü                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                    | 17                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Anthracene                            | SVOA         | 20       | U       | 20  | 20                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                    | 19                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Benzo(a)anthracene Benzo(a)pyrene     | SVOA         | 20       | U       | 20  | 20                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                    | 19                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Benzo(b)fluoranthene                  | SVOA         | 26       | U       | 26  | 26                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                    | 25                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Benzo(ghi)perylene                    | SVOA         | 16       | U       | 16  | 16                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                    | 16                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Benzo(k)fluoranthene                  | SVOA         | 40       | U       | 40  | 39                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39                                    | 39                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Benzyl alcohol                        | SVOA         |          |         |     | 1,54                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A Long                                | A 15 19                       | <b>电影</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54         | U                 |        |
| Bis(2-chloro-1-methylethyl)ether      | SVOA         | 23       | U       | 23  | 23                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                                    | 22                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Bis(2-Chloroethoxy)methane            | SVOA         | 23       | U       | 23  | 23                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                                    | 22                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Bis(2-chloroethyl) ether              | SVOA         | 17       | U       | 17  | 16                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                    | 16                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Bis(2-ethylhexyl) phthalate           | SVOA         | 46       | U       | 46  | 45                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                    | 45                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47         | U                 |        |
| Butylbenzylphthalate                  | SVOA         | 43       | U       | 43  | 42                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42                                    | 42                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | +      |
| Carbazole                             | SVOA         | 36       | U       | 36  | 35                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                                    | 35                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Chrysene                              | SVOA         | 27       | U       | 27  | 27                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27                                    | 26                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | -      |
| Dibenz[a,h]anthracene                 | SVOA         | 19       | U       | 19  | 19                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                    | 18                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | +      |
| Dibenzofuran                          | SVOA         | 20       | U       | 20  | 20                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                    | 19                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | H      |
| Diethyl phthalate                     | SVOA         | 20       | 7.      | 26  | 26                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                    | 25                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33         | 0                 | 180    |
| Diethylphthalate                      | SVOA         | 26       | U       | 26  | 26                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26                                    | 22                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 1 3375 |
| Dimethyl phthalate                    | SVOA         | 23       | U       | 23  | 23                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                                    | 28                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | +      |
| Di-n-butylphthalate                   | SVOA         | 14       | U       | 14  | 14                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                    | 14                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | +      |
| Di-n-octylphthalate                   | SVOA         | 36       | U       | 36  | 35                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                                    | 35                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 1      |
| Fluoranthene<br>Fluorene              | SVOA         | 18       | U       | 18  | 18                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                    | 18                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Hexachlorobenzene                     | SVOA         | 29       | U       | 29  | 29                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                                    | 28                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Hexachlorobutadiene                   | SVOA         | 10       | U       | 10  | 9.8                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8                                   | 9.7                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35         | U                 |        |
| Hexachlorocyclopentadiene             | SVOA         | 50       | U       | 50  | 49                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49                                    | 49                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 340        | U                 |        |
| Hexachloroethane                      | SVOA         | 21       | U       | 21  | 21                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                    | 21                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Indeno(1,2,3-cd)pyrene                | SVOA         | 22       | U       | 22  | 22                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                    | 21                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Isophorone                            | SVOA         | 17       | U       | 17  | 17                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                    | 17                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Naphthalene                           | SVOA         | 31       | U       | 31  | 31                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31                                    | 30                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Nitrobenzene                          | SVOA         | 22       | U       | 22  | 22                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22                                    | 21                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| N-Nitroso-di-n-dipropylamine          | SVOA         | 31       | U       | 31  | 31                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31                                    | 30                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| N-Nitrosodiphenylamine                | SVOA         | 21       | U       | 21  | 21                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                    | 20                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 |        |
| Pentachlorophenol                     | SVOA         | 330      | U       | 330 | 330                                             | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 330                                   | 320                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 340        | U                 | I      |
| Phenanthrene                          | SVOA         | 17       | U       | 17  | 17                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                    | 17                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 1      |
| Phenol                                | SVOA         | 18       | U       | 18  | 18                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                    | 18_                           | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | 1      |
| Pyrene                                | SVOA         | 12       | U       | 12  | 12                                              | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                    | 12                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35         | U                 | -      |
|                                       | SVOA         | 14.13    |         |     | THE R. LEWIS CO., LANSING, MICH. LANSING, MICH. | TO BE TO THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY | CONTRACTOR PROPERTY.                  | a management of the territory | THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P | CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE | 69         | U                 |        |

Remaining Sites Verification Package for the 100-D-62, 183-DR Head House Septic Tank; 100-D-77, 183-DR Water Treatment Facility; and 100-D-83:1, 183-DR Acid Addition Pipelines Waste Sites

07/08/13

07/08/13

Date

Date

Rev. No.

N. K. Schiffern J. D. Skoglie

0100D-CA-V0508

Originator

Checked Calc. No.

|                                                  |         |           | J78, FS |            | Sites Verif<br>J1PW | /C9, FS      |          |           | /D0, F                       |           | J1PW     | D1, F  | S-4           |
|--------------------------------------------------|---------|-----------|---------|------------|---------------------|--------------|----------|-----------|------------------------------|-----------|----------|--------|---------------|
| CONSTITUENT                                      | CLASS - |           | 15/2013 |            | 9/1                 | 8/2012       |          | 9/1       | 8/201                        | 2         | 9/1      | 8/2012 |               |
|                                                  | -       | ug/kg     | Q       | PQL        | ug/kg               | Q            | PQL      | ug/kg     | Q                            | PQL       | ug/kg    | Q      | PQ            |
| 1,2,4-Trichlorobenzene                           | SVOA    | 28        | U_      | 28         | 27                  | U            | 27       | 27        | U                            | 27        | 26       | U      | 26            |
| 1,2-Dichlorobenzene                              | SVOA    | 22        | U       | 22         | 21                  | U            | 21       | 21        | U                            | 12        | 20       | Ü      | 1             |
| 1,3-Dichlorobenzene                              | SVOA    | 12        | Ü       | 12         | 12                  | U            | 12       | 12        | U                            | 13        | 13       | U      | 1:            |
| 1,4-Dichlorobenzene                              | SVOA    | 13        | U       | 13         | 13                  | U            | 9.8      | 9.6       | Ū                            | 9.6       | 9.2      | U      | 9.            |
| 2,4,5-Trichlorophenol                            | SVOA    | 9.9       | U       | 9.9<br>9.9 | 9.8                 | U            | 9.8      | 9.6       | Ü                            | 9.6       | 9.2      | U      | 9.            |
| 2,4,6-Trichlorophenol                            | SVOA    | 9.9       | U       | 9.9        | 9.8                 | Ü            | 9.8      | 9.6       | Ü                            | 9.6       | 9.2      | U      | 9.            |
| 2,4-Dichlorophenol                               | SVOA    | 9.9<br>65 | Ü       | 65         | 64                  | <del>u</del> | 64       | 63        | U                            | 63        | 61       | U      | 6             |
| 2,4-Dimethylphenol                               | SVOA    | 330       | Ū       | 330        | 320                 | Ü            | 320      | 320       | UX                           | 320       | 310      | U      | 3             |
| 2,4-Dinitrophenol 2,4-Dinitrotoluene             | SVOA    | 65        | U       | 65         | 64                  | U            | 64       | 63        | U                            | 63        | 61       | U      | - 6           |
| 2,4-Dinitrotoluene                               | SVOA    | 28        | Ü       | 28         | 27                  | υ            | 27       | 27        | U                            | 27        | 26       | U      | 2             |
| 2-Chloronaphthalene                              | SVOA    | 9.9       | U       | 9.9        | 9.8                 | U            | 9.8      | 9.6       | U                            | 9.6       | 9.2      | U      | 9             |
| 2-Chlorophenol                                   | SVOA    | 21        | U       | 21         | 20                  | U            | 20       | 20        | U                            | 20        | 19       | U      | _!            |
| 2-Methylnaphthalene                              | SVOA    | 19        | U       | 19         | 19                  | U            | 19       | _18       | U                            | 18_       | 18       | U      | -!            |
| 2-Methylphenol (cresol, o-)                      | SVOA    | 13        | U       | 13         | 13                  | U            | 13       | 12        | U                            | 12        | 12<br>46 | U      | - 4           |
| 2-Nitroaniline                                   | SVOA    | 49        | U       | 49         | 49                  | U            | 49       | 48        | U                            | 48        | 9.2      | U      | 9             |
| 2-Nitrophenol                                    | SVOA    | 9.9       | U       | 9.9        | 9.8                 | U            | 9.8      | 9.6       | U                            | 9.6<br>86 | 83       | U      | 1             |
| 3,3'-Dichlorobenzidine                           | SVOA    | 89        | U       | 89         | 88                  | U            | 88<br>32 | 32        | U                            | 32        | 31       | U      |               |
| 3+4 Methylphenol (cresol, m+p)                   | SVOA    | 33        | U       | 33         | 32<br>71            | U            | 71       | 70        | U                            | 70        | 68       | U      | -             |
| 3-Nitroaniline                                   | SVOA    | 72        | U       | 330        | 320                 | U            | 320      | 320       | Ü                            | 320       | 310      | U      | 1 3           |
| 4,6-Dinitro-2-methylphenol                       | SVOA    | 330<br>19 | U       | 19         | 19                  | Ū            | 19       | 18        | U                            | 18        | 18       | U      | 1             |
| 4-Bromophenylphenyl ether                        | SVOA    | 65        | U       | 65         | 64                  | U            | 64       | 63        | U                            | 63        | 61       | U      |               |
| 4-Chloro-3-methylphenol                          | SVOA    | 81        | U       | 81         | 80                  | Ū            | 80       | 79        | U                            | 79        | 76       | U      |               |
| 4-Chlorophenylphenyl ether                       | SVOA    | 21        | Ū       | 21         | 20                  | U            | 20       | 20        | U                            | 20        | 19       | U      |               |
| 4-Nitroaniline                                   | SVOA    | 72        | U       | 72         | 71                  | U            | 71       | 70        | U                            | 70        | 67       | U      | <u> </u>      |
| 4-Nitrophenol                                    | SVOA    | 96        | U       | 96         | 95                  | U            | 95       | 93        | U                            | 93        | 90       | U      | L             |
| Acenaphthene                                     | SVOA    | 10        | U       | 10         | 10                  | U            | 10_      | 9.9       | U                            | 9.9       | 9.5      | U      | -             |
| Acenaphthylene                                   | SVOA    | 17        | U       | 17         | 17                  | U            | 17       | 16        | U                            | 16_       | 16       | U      | +             |
| Anthracene                                       | SVOA    | 17_       | U_      | _17        | 17                  | U            | 17       | 16        | U                            | 16_       | 16       | U      | ┿             |
| Benzo(a)anthracene                               | SVOA    | 22        | J       | 20_        | 20                  | U            | 20       | 19        | U                            | 19        | 18       | Ü      | +             |
| Benzo(a)pyrene                                   | SVOA    | 20_       | U       | 20_        | 20                  | U            | 20       | 19        | 1 0                          | 25        | 24       | U      | ╁             |
| Benzo(b)fluoranthene                             | SVOA    | 35_       | JX      | 26         | 26                  | U            | 26<br>16 | 25<br>15  | T U                          | 15        | 15       | U      | +             |
| Benzo(ghi)perylene                               | SVOA    | 16        | U       | 16         | 16<br>39            | U            | 39       | 38        | + 0                          | 38        | 37       | U      | +             |
| Benzo(k)fluoranthene                             | SVOA    | 39<br>23  | UX      | 39         | 22                  | U            | 22       | 22        | U                            | 22        | 21       | U      |               |
| Bis(2-chloro-1-methylethyl)ether                 | SVOA    | 23        | 10      | 23         | 22                  | U            | 22       | 22        | U                            | 22        | 21       | U      |               |
| Bis(2-Chloroethoxy)methane                       | SVOA    | 16        | U       | 16         | 16                  | Ü            | 16       | 16        | U                            | 16        | 15       | U      |               |
| Bis(2-chloroethyl) ether                         | SVOA    | 45        | ΨŪ      | 45         | 45                  | Ū            | 45       | 44        | U                            | 44        | 43       | U      | _             |
| Bis(2-ethylhexyl) phthalate Butylbenzylphthalate | SVOA    | 42        | U       | 42         | 42                  | U            | 42       | 41        | U                            | 41        | 40       | U      | 4             |
| Carbazole                                        | SVOA    | 36        | Ü       | 36         | 35                  | U            | 35       | 35        | U                            | 35_       | 33       | U      | $\bot$        |
| Chrysene                                         | SVOA    | 29        | J       | 27         | 26                  | U            | 26       | 26        | U                            | 26        | 25       | U      | +             |
| Dibenz[a,h]anthracene                            | SVOA    | 19        | U       | 19         | 19                  | U            | 19       | 18        | U                            | 18        | 18_      | U      |               |
| Dibenzofuran                                     | SVOA    | 20        | U       | 20         | 20                  | U_           | 20       | 19        | U                            |           | 18       | U      | +             |
| Diethyl phthalate                                | SVOA    | 26        | U       | 26_        | 25                  | U            | 25       | 25        | U                            |           | 24       | 10     | +             |
| Dimethyl phthalate                               | SVOA    | 23        | U       | 23         | 22                  | U            | 22       | 22        | U                            | 22        | 27       | U      | +             |
| Di-n-butylphthalate                              | SVOA    | 29        | U       | 29         | 28                  | U            | 28       | 28        | U                            |           | 13       | U      | +             |
| Di-n-octylphthalate                              | SVOA    | 14        | U       | 14         | 14<br>35            | U            | 35       | 35        | υ                            |           | 33       | T U    | $\top$        |
| Fluoranthene                                     | SVOA    | 36        | J       | 36         |                     | U            | 18       | 17        | + 🗓                          |           | 17       | Ū      | $\top$        |
| Fluorene                                         | SVOA    | 18        | U       | 18_        | 18<br>28            | U            | 28       | 28        | U                            |           | 27       | U      | 1             |
| Hexachlorobenzene                                | SVOA    | 9.9       | บ       | 9.9        | 9.8                 | U            | 9.8      | 9.6       | Ü                            |           | 9.2      | U      |               |
| Hexachlorobutadiene                              | SVOA    | 49        | U       | 49         | 49                  | U            | 49       | 48        | Ū                            |           | 46       | U      | $\perp$       |
| Hexachlorocyclopentadiene Hexachloroethane       | SVOA    | 21        | U       | 21         | 21                  | U            | 21       | 20        | U                            |           | 20       | U      |               |
| Indeno(1,2,3-cd)pyrene                           | SVOA    | 22        | Ū       | 22         | 21                  | U            | 21       | 21        | U                            |           | 20       | U      |               |
| Isophorone                                       | SVOA    | 17        | U       | 17         | 17                  | U            | 17       | 16        | U                            |           | 16       | U      | _             |
| Naphthalene                                      | SVOA    | 31        | U       |            | 30                  | U            | 30       | 30        | U                            |           | 29       | U      | -+-           |
| Nitrobenzene                                     | SVOA    | 22        | U       |            | 21                  | U            | 21       | 21        | U                            |           | 20       | U      | _             |
| N-Nitroso-di-n-dipropylamine                     | SVOA    | 31        | U       |            | 30                  | U            | 30_      | 30        | U                            |           | 19       | U      |               |
| N-Nitrosodiphenylamine                           | SVOA    | 21        | U       |            | 20                  | U            | 20       | 20        | U                            |           | 310      | + 0    |               |
| Pentachlorophenol                                | SVOA    | 330       | U       |            | 320                 | U            | 320      | 320<br>16 | $+\frac{\upsilon}{\upsilon}$ |           | 16       | U      | -+            |
| Phenanthrene                                     | SVOA    | 20        |         |            | 17                  | U            | 18       | 17        | 1                            |           | 17       | 10     |               |
| Phenol                                           | SVOA    | 18        | U       | _          | 15                  | - J          | 12       | 12        | T U                          |           | 11       | Ťΰ     | $\rightarrow$ |
| Pyrene                                           | SVOA    |           |         |            |                     |              |          |           |                              |           |          |        |               |

Remaining Sites Verification Package for the 100-D-62, 183-DR Head House Septic Tank; 100-D-77, 183-DR Water Treatment Facility; and 100-D-83:1, 183-DR Acid Addition Pipelines Waste Sites

J. D. Skoglie 0100D-CA-V0508

Checked Calc. No.

| CONCENTRATIONE                                        | OT AGG       | J1P      | WD2, F  | S-5       | JIP       | WD3, F  | S-6      | J1R654   | , Equi:<br>Blank | pmen          |
|-------------------------------------------------------|--------------|----------|---------|-----------|-----------|---------|----------|----------|------------------|---------------|
| CONSTITUENT                                           | CLASS        | 9,       | /18/201 | 2         | 9/        | 18/2012 | 3        | 4,       | 8/2013           |               |
|                                                       |              | ug/kg    | Q       | PQL       | ug/kg     | Q       | PQL      | ug/kg    | Q                | PQ            |
| 1,2,4-Trichlorobenzene                                | SVOA         | 26       | Ü       | 26        | 28        | U       | 28       | 27       | U                | _ 27          |
| 1,2-Dichlorobenzene                                   | SVOA         | 21       | U       | 21        | 22        | U       | 12       | 21<br>11 | U                | 21            |
| 1,3-Dichlorobenzene                                   | SVOA         | 11       | U       | 11        | 12        | U       | 13       | 13       | U                | 13            |
| 1,4-Dichlorobenzene                                   | SVOA         | 9.4      | Ŭ       | 9.4       | 9.9       | U       | 9.9      | 9.5      | Ü                | 9.5           |
| 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol           | SVOA         | 9.4      | U       | 9.4       | 9.9       | U       | 9.9      | 9.5      | U                | 9.5           |
| 2,4-Dichlorophenol                                    | SVOA         | 9.4      | Ū       | 9.4       | 9.9       | U       | 9.9      | 9.5      | Ū                | 9.5           |
| 2,4-Dimethylphenol                                    | SVOA         | 62       | U       | 62        | 65        | U       | 65       | 63       | U                | 63            |
| 2,4-Dinitrophenol                                     | SVOA         | 310      | Ū       | 310       | 330       | U       | 330      | 320      | U                | 32            |
| 2,4-Dinitrotoluene                                    | SVOA         | 62       | U       | 62        | 65        | U       | 65       | 63       | U                | 63            |
| 2,6-Dinitrotoluene                                    | SVOA         | 26       | U       | 26        | 28        | U       | 28       | 27       | U                | 27            |
| 2-Chloronaphthalene                                   | SVOA         | 9.4      | U       | 9.4       | 9.9       | U       | 9.9      | 9.5      | U                | 9.            |
| 2-Chlorophenol                                        | SVOA         | 20       | U       | 20        | 21        | U       | 21       | 20       | U                | 20            |
| 2-Methylnaphthalene                                   | SVOA         | 18       | U       | 18        | 19        | U       | 19       | 18       | U                | 18            |
| 2-Methylphenol (cresol, o-)                           | SVOA         | 12       | U       | 12        | 13        | U       | 13_      | 12       | U                | 12            |
| 2-Nitroaniline                                        | SVOA         | 47       | U       | 47        | 49        | U       | 9.9      | 9.5      | U                | 9.:           |
| 2-Nitrophenol                                         | SVOA         | 9.4      | U       | 9.4<br>84 | 9.9<br>89 | U       | 89       | 86       | U                | 86            |
| 3,3'-Dichlorobenzidine 3+4 Methylphenol (cresol, m+p) | SVOA<br>SVOA | 31       | U       | 31        | 33        | U       | 33       | 31       | U                | 3             |
| 3-Nitroaniline                                        | SVOA         | 68       | U       | 68        | 72        | Ü       | 72       | 69       | U                | 69            |
| 4,6-Dinitro-2-methylphenol                            | SVOA         | 310      | Ū       | 310       | 330       | U       | 330      | 310      | Ü                | 31            |
| 4-Bromophenylphenyl ether                             | SVOA         | 18       | U       | 18        | 19        | Ū       | 19       | 18       | Ü                | 18            |
| 4-Chloro-3-methylphenol                               | SVOA         | 62       | U       | 62        | 65        | U       | 65       | 63       | U                | 6:            |
| 4-Chloroaniline                                       | SVOA         | 77       | U       | 77        | 81        | U       | 81       | 78       | U                | 78            |
| 4-Chlorophenylphenyl ether                            | SVOA         | 20       | U       | 20        | 21        | U       | 21       | 20       | U                | 20            |
| 4-Nitroaniline                                        | SVOA         | 68       | U       | 68        | 72        | U       | 72       | 69       | U                | 69            |
| 4-Nitrophenol                                         | SVOA         | 91       | U       | 91        | 96        | U       | 96       | 92       | U                | 92            |
| Acenaphthene                                          | SVOA         | 9.6      | U       | 9.6       | 10        | U       | 10       | 9.8      | U                | 9.            |
| Acenaphthylene                                        | SVOA         | 16       | U       | 16        | 17        | U_      | 17       | 16       | U                | 10            |
| Anthracene                                            | SVOA         | 16       | U       | 16<br>19  | 17<br>20  | U       | 20       | 19       | U                | 10            |
| Benzo(a)anthracene                                    | SVOA _       | 19       | U       | 19        | 20        | U       | 20       | 19       | Ü                | 19            |
| Benzo(a)pyrene Benzo(b)fluoranthene                   | SVOA         | 25       | T U     | 25        | 26        | U       | 26       | 25       | U                | 2             |
| Benzo(ghi)perylene                                    | SVOA         | 15       | U       | 15        | 16        | U       | 16       | 15       | U                | 1:            |
| Benzo(k)fluoranthene                                  | SVOA         | 37       | Ü       | 37        | 40        | Ū       | 40       | 38       | U                | 3             |
| Bis(2-chloro-1-methylethyl)ether                      | SVOA         | 22       | U       | 22        | 23        | U       | 23       | 22       | U                | 2:            |
| Bis(2-Chloroethoxy)methane                            | SVOA         | 22       | U       | 22        | 23        | U       | 23       | 22       | Ü                | 2:            |
| Bis(2-chloroethyl) ether                              | SVOA         | 16       | U       | 16        | 16        | U       | 16       | 16       | U                | 10            |
| Bis(2-ethylhexyl) phthalate                           | SVOA         | 43       | U       | 43        | 45        | U       | 45       | 44       | U                | 4             |
| Butylbenzylphthalate                                  | SVOA         | 40       | U       | 40        | 43        | U       | 43       | 41       | U                | 4             |
| Carbazole                                             | SVOA         | 34       | U       | 34        | 36        | U       | 36<br>27 | 34<br>26 | U                | <u>3</u>      |
| Chrysene                                              | SVOA         | 25<br>18 | U       | 25        | 27<br>19  | U       | 19       | 18       | U                | $\frac{2}{1}$ |
| Dibenz(a,h)anthracene Dibenzofuran                    | SVOA         | 19       | + U     | 19        | 20        | U       | 20       | 19       | U                | 1             |
| Diethyl phthalate                                     | SVOA         | 24       | U       | 24        | 26        | U       | 26       | 25       | Ü                | 2             |
| Dimethyl phthalate                                    | SVOA         | 22       | U       | 22        | 23        | Ū       | 23       | 22       | U                | 2             |
| Di-n-butylphthalate                                   | SVOA         | 27       | U       | 27        | 29        | U       | 29       | 28       | U                | 2             |
| Di-n-octylphthalate                                   | SVOA         | 13       | U       | 13        | 14        | U       | 14       | 14       | U                | 1             |
| Fluoranthene                                          | SVOA         | 34       | U       | 34        | 36        | U       | 36       | 34       | U                | 3             |
| Fluorene                                              | SVOA         | 17       | U       | 17        | 18        | U       | 18       | 17       | U                | 1             |
| Hexachlorobenzene                                     | SVOA         | 27       | U       | 27        | 29        | U       | 29       | 28       | U                | 2             |
| Hexachlorobutadiene                                   | SVOA         | 9.4      | U       | 9.4       | 9.9       | U       | 9.9      | 9.5      | U                | 9             |
| Hexachlorocyclopentadiene                             | SVOA         | 47       | U       | 47        | 49        | U       | 49       | 48       | U                | 4             |
| Hexachloroethane                                      | SVOA         | 20       | U       | 20        | 21        | U_      | 21       | 20       | U                | 2             |
| Indeno(1,2,3-cd)pyrene                                | SVOA         | 21       | U       | 21        | 17        | U       | 17       | 21<br>16 | U                | 1             |
| Isophorone                                            | SVOA         | 16<br>29 | U       | 16<br>29  | 31        | Ü       | 31       | 30       | U                | 3             |
| Naphthalene                                           | SVOA<br>SVOA | 29       | U       | 29        | 22        | U       | 22       | 21       | U                | 2             |
| Nitrobenzene N-Nitroso-di-n-dipropylamine             | SVOA         | 29       | U       | 29        | 31        | 1 0     | 31       | 30       | U                | 3             |
| N-Nitroso-di-n-dipropylamine N-Nitrosodiphenylamine   | SVOA         | 20       | U       | 20        | 21        | U       | 21       | 20       | Ū                | 2             |
| Pentachlorophenol                                     | SVOA         | 310      | U       | 310       | 330       | Ü       | 330      | 310      | Ū                | 3             |
| Phenanthrene                                          | SVOA         | 16       | U       | 16        | 17        | U       | 17       | 16       | Ū                | 1             |
| Phenol                                                | SVOA         | 17       | U       | 17_       | 18        | U       | 18       | 17       | U                | 1             |
| Pyrene                                                | SVOA         | 11       | U       | 11        | 12        | U       | 12       | 12       | U                | 1             |

 Attachment
 1

 Originator
 N. K. Schiffern

 Checked
 J. D. Skoglie

 Calc. No.
 0100D-CA-V0508

heet No. 27 of 31
Date 07/08/13
Date 07/08/13
Rev. No. 0

| 7 |
|---|
| 0 |
| 2 |
|   |
| 0 |

|             |        | Attachment 1. | 100-D-77 | , 100- | 0-62, and | 100-D-83 | :1 Was | te Site V | erification | ı Sam | ple Resu | Its (Metal | s) In  | formation | nal Purpo | ses Or | nly <sup>b</sup> . |       |      |      |
|-------------|--------|---------------|----------|--------|-----------|----------|--------|-----------|-------------|-------|----------|------------|--------|-----------|-----------|--------|--------------------|-------|------|------|
| C           | HEIS   | Sample Date   | Al       | uminu  | ım        | A        | ntimon | y         | A           | rseni | С        | I          | Bariui | n         | В         | erylli | um                 |       | Boro | n    |
| Sample Area | Number | Sample Date   | mg/kg    | Q      | PQL       | mg/kg    | Q      | PQL       | mg/kg       | Q     | PQL      | mg/kg      | Q      | PQL       | mg/kg     | Q      | PQL                | mg/kg | Q    | PQL  |
| EXC-4       | J1PW84 | 9/18/2012     | 8010     | Х      | 1.3       | 0.32     | UJ     | 0.32      | 11.8        |       | 0.56     | 91.9       |        | 0.064     | 0.31      |        | 0.028              | 2.1   |      | 0.83 |
| FS-1        | J1PWC8 | 9/18/2012     | 6340     |        | 1.5       | 0.36     | U      | 0.36      | 3.5         |       | 0.63     | 59.7       |        | 0.072     | 0.30      |        | 0.031              | 0.93  | U    | 0.93 |

| Sample Area | HEIS   | Sample Date | Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | admiu                                            | m      | C     | Calciun | 1     | Ch     | romiu | ım    | •         | Coba | lt          |              | Coppe | er            | Hexaval | ent Cl | aromiun |
|-------------|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------|-------|---------|-------|--------|-------|-------|-----------|------|-------------|--------------|-------|---------------|---------|--------|---------|
| •           | Number |             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q                                                | PQL    | mg/kg | Q       | PQL   | mg/kg  | Q     | PQL   | mg/kg     | Q    | PQL         | mg/kg        | Q     | PQL           | mg/kg   | Q      | PQL     |
| EXC-4       | J1PW84 | 9/18/2012   | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | 0.035  | 28900 | X       | 11.9  | 18.1   | X     | 0.049 | 7.1       | X    | 0.085       | 27.5         |       | 0.18          | 0.319   | J      | 0.155   |
| SPA-8       | J1R648 | 4/8/2013    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W.Y                                              |        | 107   |         |       | STORY. | 1. E  |       | -         | 13.6 | March Sall  | SELECTION OF | 3     |               | 0.155   | U      | 0.155   |
| SPA-10      | J1R650 | 4/8/2013    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                              | CANAL. |       |         |       | SETIME |       |       | Hall Sign |      | \$ 5 0. 7   |              |       | 72 1 J. F. J. | 0.205   |        | 0.155   |
| SPA-11      | J1R651 | 4/8/2013    | o ne de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya d | 7 a a 10 7 2 2 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 1000   |       |         | ENE/A | Ja F   |       | 1 10  |           |      | San San San | 200          |       |               | 0.204   |        | 0.155   |
| FS-1        | J1PWC8 | 9/18/2012   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | 0.039  | 10400 | X       | 13.4  | 9.2    |       | 0.055 | 7.9       | X    | 0.095       | 15.4         |       | 0.21          | 0.168   |        | 0.155   |

| 0 1 1       | HEIS   | CI-D-4-     |       | Iron |     |       | Lead |      | Ma    | gnesi | ım  | M:    | angan | ese   | P     | Mercu | ry     | Mo    | lybde | num  |
|-------------|--------|-------------|-------|------|-----|-------|------|------|-------|-------|-----|-------|-------|-------|-------|-------|--------|-------|-------|------|
| Sample Area | Number | Sample Date | mg/kg | Q    | PQL | mg/kg | Q    | PQL  | mg/kg | Q     | PQL | mg/kg | Q     | PQL   | mg/kg | Q     | PQL    | mg/kg | Q     | PQL  |
| EXC-4       | JIPW84 | 9/18/2012   | 24000 | Х    | 3.2 | 54.6  | X    | 0.23 | 4550  | X     | 3.1 | 300   | X     | 0.085 | 35.3  |       | 0.54   | 0.61  | В     | 0.22 |
| FS-1        | JIPWC8 | 9/18/2012   | 23700 | X    | 3.6 | 4.9   |      | 0.26 | 4750  | X     | 3.5 | 312   | X     | 0.095 | 0.076 | M     | 0.0061 | 0.67  | BM    | 0.25 |

| Consulta Asses | HEIS   | C 1. D-4-   |       | Nickel |      | Po    | otassiu | m    | Se    | leniu | m    |       | Silicor | 1   |       | Silve | r    | 1     | Sodiu | m    |
|----------------|--------|-------------|-------|--------|------|-------|---------|------|-------|-------|------|-------|---------|-----|-------|-------|------|-------|-------|------|
| Sample Area    | Number | Sample Date | mg/kg | Q      | PQL  | mg/kg | Q       | PQL  | mg/kg | Q     | PQL  | mg/kg | Q       | PQL | mg/kg | Q     | PQL  | mg/kg | Q     | PQL  |
| EXC-4          | JIPW84 | 9/18/2012   | 13.1  | X      | 0.10 | 1260  |         | 34.6 | 0.73  | U     | 0.73 | 317   | XJ      | 4.8 | 0.39  |       | 0.14 | 586   |       | 49.9 |
| FS-1           | J1PWC8 | 9/18/2012   | 10.5  | Х      | 0.12 | 1020  |         | 39.0 | 0.85  | В     | 0.82 | 474   | XN      | 5.4 | 0.15  | U     | 0.15 | 322   |       | 56.1 |

| C 1- A      | HEIS   | C           | V:    | anadic | m     |       | Zinc |      |
|-------------|--------|-------------|-------|--------|-------|-------|------|------|
| Sample Area | Number | Sample Date | mg/kg | Q      | PQL   | mg/kg | Q    | PQL  |
| EXC-4       | J1PW84 | 9/18/2012   | 59.3  |        | 0.079 | 421   | X    | 0.34 |
| FS-1        | JIPWC8 | 9/18/2012   | 67.2  |        | 0.089 | 44.3  | X    | 0.38 |

| Attachment | 1               | Sheet No. | 28 of 31 |
|------------|-----------------|-----------|----------|
| Originator | N. K. Schiffern | Date      | 07/08/13 |
| Checked    | J. D. Skoglie   | Date      | 07/08/13 |
| Calc. No.  | 0100D-CA-V0508  | Rev. No.  | 0        |

| Sample Are  |                  | Sample Date |       | Bromide |      |       | Chlorid |     |       | luoride |      |      | gen in N | litrate | Nitroge | n in Ni<br>Nitrate |      |
|-------------|------------------|-------------|-------|---------|------|-------|---------|-----|-------|---------|------|------|----------|---------|---------|--------------------|------|
| Sample Area | a Hillias Number | Sample Date | mg/kg | Q       | PQL  | ug/kg | Q       | PQL | ug/kg | Q       | PQL  | %    | Q        | PQL     | pН      | Q                  | PQL  |
| EXC-4       | J1PW84           | 9/18/2012   | 0.39  | U       | 0.39 | 2.2   | В       | 2.0 | 0.83  | U       | 0.83 | 0.70 | В        | 0.32    | 1.2     |                    | 0.30 |
| FS-1        | J1PWC8           | 9/18/2012   | 0.38  | U       | 0.38 | 2.0   | В       | 1.9 | 0.80  | UN      | 0.80 | 1.1  | В        | 0.30    | 1.0     | M                  | 0.31 |

| Sample Area | HEIS Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Date | Nitrog | gen in l | Nitrite | Phospho | rous in | phosphate | 1     | Sulfate |     | TI    | PH- Die | PQL ug/kg   650 160000 640 90000 | - Diesel EXT |   |     |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|----------|---------|---------|---------|-----------|-------|---------|-----|-------|---------|----------------------------------|--------------|---|-----|
| Sample Area | THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S | Sample Date | mg/kg  | Q        | PQL     | mg/kg   | Q       | PQL       | mg/kg | Q       | PQL | ug/kg | Q       |                                  |              | Q | PQL |
| EXC-4       | J1PW84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/18/2012   | 0.34   | UR       | 0.34    | 1.3     | UR      | 1.3       | 156   |         | 1.8 | 59000 |         |                                  |              | ļ | 960 |
| FS-1        | J1PWC8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/18/2012   | 0.33   | UR       | 0.33    | 1.2     | UNR     | 1.2       | 12.7  |         | 1.7 | 65000 |         | 640                              | 90000        |   | 950 |

| Sample Area | HEIS Number | Sample Date |      | t moistu<br>sample) | re (wet | pH l | pH Measur<br>pH Q<br>9.26<br>9.29 | ement |
|-------------|-------------|-------------|------|---------------------|---------|------|-----------------------------------|-------|
| Sample Mea  |             |             | %    | Q                   | PQL     | pН   | Q                                 | PQL   |
| EXC-4       | J1PW84      | 9/18/2012   | 1.4  |                     | 0.10    | 9.26 |                                   | 0.100 |
| FS-1        | J1PWC8      | 9/18/2012   | 0.79 |                     | 0.10    | 9.29 |                                   | 0.100 |

| Originator N. K. Schiffern Date 07/08/13 Checked J. D. Skoglie Date 07/08/13 | Attachment | 1               | Sheet No. | 29 of 31 |   |
|------------------------------------------------------------------------------|------------|-----------------|-----------|----------|---|
| Checked J. D. Skoglie Date 07/08/13                                          | Originator | N. K. Schiffern | Date      | 07/08/13 |   |
| 0 1                                                                          | · ·        | J. D. Skoglie   | Date      | 07/08/13 |   |
| Calc. No. 0100D-CA-V0508 Rev. No. 0                                          | Calc. No.  | 0100D-CA-V0508  | Rev. No.  | 0        | _ |

Attachment 1. 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Verification Sample Results (Organics)
\_Informational Purposes Only <sup>b</sup>.

|                                        | _intormational P | irposes Only | <u>.                                      </u> |      |           |         |      |  |  |
|----------------------------------------|------------------|--------------|------------------------------------------------|------|-----------|---------|------|--|--|
| 0.010777777777                         | GV + GG          | ′ ` Ј1Р      | W84, EX                                        | C-4  | JII       | PWC8, I | FS-1 |  |  |
| CONSTITUENT                            | CLASS            |              | 9/18/2012                                      | 2    | 9/18/2012 |         |      |  |  |
| _                                      |                  | ug/kg        | Q                                              | PQL  | ug/kg     | 0       | PQL  |  |  |
| Acenaphthene                           | PAH              | 9.7          | UJ                                             | 9.7  | 890       | X       | 9.4  |  |  |
| Acenaphthylene                         | PAH              | 8.7          | U                                              | 8.7  | 55        | JX      | 8.5  |  |  |
| Anthracene                             | PAH              | 49           | X                                              | 3.0  | 1400      | 1       | 2.9  |  |  |
| Benzo(a)anthracene                     | PAH              | 88           | XJ                                             | 3.1  | 2800      |         | 3.0  |  |  |
| Benzo(a)pyrene                         | PAH              | 130          | J                                              | 6.2  | 2000      |         | 6.1  |  |  |
| Benzo(b)fluoranthene                   | PAH              | 150          |                                                | 4.1  | 2200      |         | 4.0  |  |  |
| Benzo(ghi)perylene                     | PAH              | 130          | X                                              | 7.0  | 1600      |         | 6.8  |  |  |
| Benzo(k)fluoranthene                   | PAH              | 48           | X                                              | 3.8  | 830       |         | 3.7  |  |  |
| Chrysene                               | PAH              | 160          | J                                              | 4.7  | 2300      | X       | 4.6  |  |  |
| Dibenz[a,h]anthracene                  | PAH              | 11           | U                                              | 11   | 440       | X       | 10   |  |  |
| Fluoranthene                           | PAH              | 330          | 1                                              | 13   | 4600      |         | 12   |  |  |
| Fluorene                               | PAH              | 25           | JX                                             | 5.1  | 750       |         | 5.0  |  |  |
| Indeno(1,2,3-cd)pyrene                 | PAH              | 120          | 1 321                                          | 12   | 1500      |         | 11   |  |  |
| Naphthalene                            | PAH              | 12           | U                                              | 12   | 111       | ט       | 11   |  |  |
| Phenanthrene                           | PAH              | 160          | J                                              | 12   | 3400      | 1       | 11   |  |  |
| Pyrene                                 | PAH              | 330          | J                                              | 12   | 4700      | 1       | 11   |  |  |
| Aroclor-1016                           | PCB              | 2.7          | U                                              | 2.7  | 2.5       | U       | 2.5  |  |  |
| Aroclor-1221                           | PCB              | 7.8          | U                                              | 7.8  | 7.4       | U       | 7.4  |  |  |
| Aroclor-1232                           | PCB              | 1.9          | υ                                              | 1.9  | 1.8       | U       | 1.8  |  |  |
| Aroclor-1242                           | PCB              | 4.5          | U                                              | 4.5  | 4.3       | U       | 4.3  |  |  |
| Aroclor-1248                           | PCB              | 4.5          | Ü                                              | 4.5  | 4.3       | U       | 4.3  |  |  |
| Aroclor-1254                           | PCB              | 2.5          | U                                              | 2.5  | 2.4       | U       | 2.4  |  |  |
| Aroclor-1260                           | PCB              | 13           | + -                                            | 2.5  | 2.4       | U       | 2.4  |  |  |
| Aldrin                                 | PEST             | 0.24         | U                                              | 0.24 | 0.24      | U       | 0.24 |  |  |
| Alpha-BHC                              | PEST             | 0.21         | U                                              | 0.24 | 0.24      | U       | 0.24 |  |  |
| alpha-Chlordane                        | PEST             | 0.21         | U                                              | 0.21 | 0.21      | U       | 0.21 |  |  |
| beta-1.2,3,4.5,6-Hexachlorocyclohexane | PEST             | 0.64         | Ü                                              | 0.51 | 0.64      | U       | 0.51 |  |  |
| Delta-BHC                              | PEST             | 0.39         | U                                              | 0.39 | 0.39      | U       | 0.04 |  |  |
| Dichlorodiphenyldichloroethane         | PEST             | 0.53         | U                                              | 0.53 | 0.53      | U       | 0.53 |  |  |
| Dichlorodiphenyldichloroethylene       | PEST             | 3.4          | -                                              | 0.33 | 0.23      | U       | 0.33 |  |  |
| Dichlorodiphenyltrichloroethane        | PEST             | 2.4          | Y                                              | 0.23 | 0.23      | U       | 0.23 |  |  |
| Dieldrin                               | PEST             | 0.20         | Ü                                              | 0.20 | 0.20      | U       | 0.37 |  |  |
| Endosulfan I                           | PEST             | 0.17         | U                                              | 0.17 | 0.20      | U       | 0.20 |  |  |
| Endosulfan II                          | PEST             | 0.28         | U                                              | 0.17 | 0.17      | U       | 0.17 |  |  |
| Endosulfan sulfate                     | PEST             | 0.27         | Ü                                              | 0.23 | 0.28      | U       | 0.28 |  |  |
| Endrin                                 | PEST             | 0.30         | U                                              | 0.30 | 0.27      | Ū       | 0.27 |  |  |
| Endrin aldehyde                        | PEST             | 0.17         | U                                              | 0.17 | 0.16      | Ū       | 0.16 |  |  |
| Endrin aldenyde  Endrin ketone         | PEST             | 0.17         | U                                              | 0.17 | 0.16      | U       | 0.16 |  |  |
| Gamma-BHC (Lindane)                    | PEST             | 0.47         | U                                              | 0.47 | 0.47      | U       | 0.47 |  |  |
| gamma-Chlordane                        | PEST             | 0.45         | U                                              | 0.45 | 0.43      | U       | 0.45 |  |  |
| Heptachlor                             | PEST             | 0.20         | U                                              | 0.20 | 0.20      | UN      | 0.26 |  |  |
| Heptachlor epoxide                     | PEST             | 0.21         | U                                              | 0.41 | 0.21      | UN      | 0.21 |  |  |
| Methoxychlor                           | PEST             | 0.41         | U                                              | 0.41 | 0.41      | U       | 0.41 |  |  |
| Toxaphene                              | PEST             | 15           | UJ                                             | 15   | 15        | U       | 15   |  |  |
| TOXAPHETE                              | LEGI             | 1 12         | 1 03                                           | 12   | 13        |         | 13   |  |  |

| Attachment | 1               |   |
|------------|-----------------|---|
| Originator | N. K. Schiffern | _ |
| Checked    | J. D. Skoglie   | _ |
| Calc. No.  | 0100D-CA-V0508  |   |

| Sheet No. | 30 of 31 |
|-----------|----------|
| Date _    | 07/08/13 |
| Date_     | 07/08/13 |
| Rev. No.  | 0        |

Attachment 1. 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Verification Sample Results (Organics)

| Informational | Purnoses | Only b. |
|---------------|----------|---------|
|               |          |         |

|                                            | 1            | J1RKM6, SPA-10<br>4/29/2013 |          | J1RKM7, SPA-11 |             |            |           |
|--------------------------------------------|--------------|-----------------------------|----------|----------------|-------------|------------|-----------|
| CONSTITUENT                                | CLASS        |                             | /29/2013 |                |             | 1/29/201   |           |
| 1.2.4 Triable ash assessed                 | CVOA         | ug/kg                       | QU       | PQL<br>27      | ug/kg<br>28 | Q<br>U     | PQL 28    |
| 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene | SVOA         | 27                          | U        | 21             | 22          | Ū          | 22        |
| 1,3-Dichlorobenzene                        | SVOA         | 11                          | U        | 11             | 12          | U          | 12        |
| 1.4-Dichlorobenzene                        | SVOA         | 13                          | Ü        | 13             | 14          | Ü          | 14        |
| 2,4,5-Trichlorophenol                      | SVOA         | 9.5                         | Ū        | 9.5            | 10          | Ū          | 10        |
| 2,4,6-Trichlorophenol                      | SVOA         | 9.5                         | U        | 9.5            | 10          | U          | 10        |
| 2,4-Dichlorophenol                         | SVOA         | 9.5                         | U        | 9.5            | 01          | U          | 10        |
| 2,4-Dimethylphenol                         | SVOA         | 63                          | U        | 63             | 66          | U          | 66        |
| 2,4-Dinitrophenol                          | SVOA         | 320                         | UJ       | 320            | 330         | U          | 330       |
| 2,4-Dinitrotoluene                         | SVOA         | 63                          | U        | 63             | 66          | U          | 66        |
| 2,6-Dinitrotoluene                         | SVOA         | 27                          | U        | 27             | 28          | U          | 28        |
| 2-Chloronaphthalene                        | SVOA         | 9.5                         | U        | 9.5            | 10          | U          | 10        |
| 2-Chlorophenol                             | SVOA         | 20                          | U        | 20             | 21          | U          | 21        |
| 2-Methylnaphthalene                        | SVOA         | 18                          | U        | 18<br>12       | 19<br>13    | U          | 19<br>13  |
| 2-Methylphenol (cresol, o-) 2-Nitroaniline | SVOA         | 48                          | U        | 48             | 50          | U          | 50        |
| 2-Nitrophenol                              | SVOA         | 9.5                         | U        | 9.5            | 10          | U          | 10        |
| 3,3'-Dichlorobenzidine                     | SVOA         | 86                          | UJ       | 86             | 90          | U          | 90        |
| 3+4 Methylphenol (cresol, m+p)             | SVOA         | 31                          | U        | 31             | 33          | U          | 33        |
| 3-Nitroaniline                             | SVOA         | 69                          | Ū        | 69             | 73          | Ū          | 73        |
| 4.6-Dinitro-2-methylphenol                 | SVOA         | 310                         | UJ       | 310            | 330         | U          | 330       |
| 4-Bromophenylphenyl ether                  | SVOA         | 18                          | U        | 18             | 19          | U          | 19        |
| 4-Chloro-3-methylphenol                    | SVOA         | 63                          | U        | 63             | 66          | U          | 66        |
| 4-Chloroaniline                            | SVOA         | 78                          | U        | 78             | 82          | U          | 82        |
| 4-Chiorophenylphenyl ether                 | SVOA         | 20                          | U        | 20             | 21          | U          | 21        |
| 4-Nitroaniline                             | SVOA         | 69                          | U        | 69             | 73          | U          | 73        |
| 4-Nitrophenol                              | SVOA         | 92                          | U        | 92             | 97          | U          | 97        |
| Acenaphthene                               | SVOA         | 9.8                         | U        | 9.8            | 160         | 1,         | 10        |
| Acenaphthylene                             | SVOA         | 16                          | U        | 16             | 17<br>400   | U          | 17<br>17  |
| Anthracene                                 | SVOA<br>SVOA | 120                         | J        | 16<br>19       | 1700        | 1          | 20        |
| Benzo(a)anthracene Benzo(a)pyrene          | SVOA         | 99                          | J        | 19             | 1300        | +          | 20        |
| Benzo(b)fluoranthene                       | SVOA         | 180                         | J        | 25             | 2300        | 1          | 26        |
| Benzo(ghi)perylene                         | SVOA         | 59                          | J        | 15             | 800         |            | 16        |
| Benzo(k)fluoranthene                       | SVOA         | 38                          | U        | 38             | 40          | υ          | 40        |
| Bis(2-chloro-1-methylethyl)ether           | SVOA         | 22                          | U        | 22             | 23          | U          | 23        |
| Bis(2-Chloroethoxy)methane                 | SVOA         | 22                          | U        | 22             | 23          | U          | 23        |
| Bis(2-chloroethyl) ether                   | SVOA         | 16                          | U        | 16             | 17          | U          | 17        |
| Bis(2-ethylhexyl) phthalate                | SVOA         | 44                          | U        | 44             | 46          | U          | 46        |
| Butyibenzyiphthalate                       | SVOA         | 41                          | U        | 41             | 43          | U          | 43        |
| Carbazole                                  | SVOA         | 34                          | U        | 34             | 230         | J          | 36        |
| Chrysene                                   | SVOA         | 170                         | J        | 26             | 1600        | <b>↓</b> . | 27        |
| Dibenz[a,h]anthracene                      | SVOA _       | 21                          | J_       | 18             | 230         | J          | 19        |
| Dibenzofuran  Distribution                 | SVOA         | 19                          | U        | 19<br>25       | 73<br>26    | J          | 20        |
| Diethyl phthalate                          | SVOA         | 23                          | บ        | 22             | 23          | U          | 23        |
| Dimethyl phthalate Di-n-butylphthalate     | SVOA         | 28                          | U        | 28             | 29          | U          | 29        |
| Di-n-octylphthalate                        | SVOA         | 14                          | U        | 14             | 14          | U          | 14        |
| Fluoranthene                               | SVOA         | 210                         | J        | 34             | 3100        | 1          | 36        |
| Fluorene                                   | SVOA         | 17                          | U        | 17             | 140         | J          | 18        |
| Hexachlorobenzene                          | SVOA         | 28                          | U        | 28             | 29          | U          | 29        |
| Hexachlorobutadiene                        | SVOA         | 9.5                         | U        | 9.5            | 10          | U          | 10        |
| Hexachlorocyclopentadiene                  | SVOA         | 48                          | U        | 48             | 50          | U          | 50        |
| Hexachloroethane                           | SVOA         | 20                          | U        | 20             | 21          | U          | 21        |
| Indeno(1,2,3-cd)pyrene                     | SVOA         | 46                          | 1        | 21             | 690         |            | 22        |
| Isophorone                                 | SVOA         | 16                          | U        | 16             | 17          | U          | 17        |
| Naphthalene                                | SVOA         | 29                          | U        | 29             | 64          | J          | 31        |
| Nitrobenzene                               | SVOA         | 21                          | U        | 21             | 22          | U          | 22        |
| N-Nitroso-di-n-dipropylamine               | SVOA         | 29                          | U        | 29             | 31          | U          | 31        |
| N-Nitrosodiphenylamine                     | SVOA         | 20                          | U        | 20             | 21          | U          | 21        |
| Pentachlorophenol                          | SVOA<br>SVOA | 310<br>110                  | J        | 310            | 330<br>1700 | U          | 330<br>17 |
| Phenanthrene Phenol                        | SVOA         | 17                          | U        | 16<br>17       | 18          | U          | 18        |
| Prienoi                                    | SVOA         | 210                         | 1        | 12             | 2700        | + -        | 12        |
| 1 yielie                                   | JYUA         | Attachmen                   |          | 1 12           | 2700        |            | Sheet No. |

 Attachment
 1
 Sheet No.
 31 of 31

 Originator
 N. K. Schiffern
 Date
 07/08/13

 Checked
 J. D. Skoglie
 Date
 07/08/13

 Calc. No.
 0100D-CA-V0508
 Rev. No.
 0

Acrobat 8.0

# **CALCULATION COVER SHEET**

| -D                                              |                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental                                   |                                                                                                                                       | *Ca                                                                                                                                                                                                                        | lculation No: 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0D-CA-V0509                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 00-D-77, 100-D-62, and                          | 100-D-83:1 Direct                                                                                                                     | Contact Hazard                                                                                                                                                                                                             | Quotient and Car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cinogenic Risk C                                                                                                                                                                                                                                                                                                                                                                                                       | alculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Program: Excel                                  |                                                                                                                                       | Progr                                                                                                                                                                                                                      | am No: Excel 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03                                                                                                                                                                                                                                                                                                                                                                                                                     | - 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ched calculations have bee<br>should be used in | n generated to docur conjunction with oth                                                                                             | ment compliance v<br>er relevant docum                                                                                                                                                                                     | with established clean<br>ments in the administ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anup levels. These rative record.                                                                                                                                                                                                                                                                                                                                                                                      | calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| d Calculation 🖂                                 | Preliminar                                                                                                                            | у 🗆                                                                                                                                                                                                                        | Superseded [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Void                                                                                                                                                                                                                                                                                                                                                                                                                   | ded 🗌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sheet Numbers                                   | Originator                                                                                                                            | Checker                                                                                                                                                                                                                    | Reviewer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Approval                                                                                                                                                                                                                                                                                                                                                                                                               | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cover = 1<br>Sheets = 4<br>Total = 5            | N. K. Schiffern<br>N. K. Schillm                                                                                                      | J. D. Skoglie                                                                                                                                                                                                              | C. H. Dobie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 | SUMM                                                                                                                                  | ARY OF RE                                                                                                                                                                                                                  | EVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                                                                                                                                       | .,                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 1000                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                                                                                                                                       | -                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 |                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                                               | O0-D-77, 100-D-62, and Program: Excel ched calculations have bee should be used in d Calculation  Sheet Numbers  Cover = 1 Sheets = 4 | Program: Excel  ched calculations have been generated to docur should be used in conjunction with oth   Calculation Preliminar  Sheet Numbers Originator  Cover = 1 Sheets = 4 Total = 5  N. K. Schiffern  M. K. Schiffern | Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Program: Excel Progra | Program: Excel  Program No: Excel 200  Ched calculations have been generated to document compliance with established clear should be used in conjunction with other relevant documents in the administration of the conjunction with other relevant documents.  Preliminary □ Superseded □  Sheet Numbers Originator Checker Reviewer  Cover = 1  Sheets = 4  Total = 5  N. K. Schiffern □ J. D. Skoglie □ C. H. Pobje | Program: Excel Program No: Excel 2003  Ched calculations have been generated to document compliance with established cleanup levels. These should be used in conjunction with other relevant documents in the administrative record.  Calculation □ Preliminary □ Superseded □ Void Sheet Numbers Originator Checker Reviewer Approval  Cover = 1 Sheets = 4 Total = 5  N. K. Schiffern Total = 5  N. K. Schiffern Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval  Checker Reviewer Approval |

WCH-DE-018 (05/08/2007)

\*Obtain Calc. No. from Document Control and Form from Intranet

| Washingto   | n Closure Hanford, Inc.           | CALCULA     | TION SHE      |               |               |           |           |          |
|-------------|-----------------------------------|-------------|---------------|---------------|---------------|-----------|-----------|----------|
| Originator: | N. K. Schiffern                   | Date:       | 07/01/13      | Calc. No.:    | 0100D-CA-V0   | 509       | Rev.:     | 0        |
| Project:    | 100-D Area Field Remediation      | Job No:     | 14655         | Checked:      | J. D. Skoglie | <i>yr</i> | Date:     | 07/01/13 |
|             | 100-D-77, 100-D-62, and 100-D-83: | 1 Waste Sit | es Direct Con | act Hazard Qu | otient and    | •         | Sheet No. | 1 of 4   |
| Subject:    | Carcinogenic Risk Calculations    |             |               |               |               |           | L         |          |

### **PURPOSE:**

2 3

4

5

Provide documentation to support the calculation of the direct contact hazard quotient (HQ) and excess carcinogenic risk for the 100-D-77, 100-D-62, and 100-D-83:1 waste sites. In accordance with the remedial action goals (RAGs) in the remedial design report/remedial action work plan (RDR/RAWP) (DOE-RL 2009b), the following criteria must be met:

6 7 8

9

10

11

- 1) An HO of <1.0 for all individual noncarcinogens
- 2) A cumulative HQ of <1.0 for noncarcinogens
- 3) An excess cancer risk of <1 x 10<sup>-6</sup> for individual carcinogens
- 4) A cumulative excess cancer risk of <1 x 10<sup>-5</sup> for carcinogens.

12 13 14

# **GIVEN/REFERENCES:**

15 16

1) DOE-RL, 2009a, 100 Area Remedial Action Sampling and Analysis Plan, DOE/RL-96-22, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

17 18 19

20

2) DOE-RL, 2009b, Remedial Design Report/Remedial Action Work Plan for the 100 Areas, DOE/RL-96-17, Rev. 6, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

21 22 23

3) EPA, 1994, Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children, EPA/540/R-93/081, Publication No. 9285.7, U.S. Environmental Protection Agency, Washington, D.C.

25 26 27

24

4) WAC 173-340, "Model Toxics Control Act - Cleanup," Washington Administrative Code, 1996.

28 29 30

5) WCH, 2013, 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Cleanup Verification 95% UCL Calculation, 0100D-CA-V0508, Rev. 0, Washington Closure Hanford, Inc., Richland, Washington.

31 32 33

# **SOLUTION:**

34 35 36

1) Generate an HQ for each noncarcinogenic constituent detected above background or required detection limit/practical quantitation limit and compare it to the individual HQ of <1.0 (DOE-RL 2009b).

37 38

2) Sum the HQs and compare this value to the cumulative HQ of <1.0. 39

40

3) Generate an excess cancer risk value for each carcinogenic constituent detected above background or 41 required detection limit/practical quantitation limit and compare it to the excess cancer risk of 42 <1 x 10<sup>-6</sup> (DOE-RL 2009b). 43

44

4) Sum the excess cancer risk value(s) and compare it to the cumulative cancer risk of  $<1 \times 10^{-5}$ . 45

| Washington  | n Closure Hanford, Inc.          | CALCULA        | TION SHE      | <u> </u>      |               |          | ,         |          |
|-------------|----------------------------------|----------------|---------------|---------------|---------------|----------|-----------|----------|
| Originator: | N. K. Schiffern M                | Date:          | 07/08/13      | Calc. No.:    | 0100D-CA-V050 | 9        | Rev.:     | 0        |
|             | 100-D Area Field Remediation     | Job No:        | 14655         | Checked:      | J. D. Skoglie | <b>5</b> | Date:     | 07/08/13 |
| Subject:    | 100-D-77, 100-D-62, and 100-D-83 | 3:1 Waste Site | es Direct Con | act Hazard Qu | otient and /  | U        | Sheet No. | 2 of 4   |

### **METHODOLOGY:**

The 100-D-77, 100-D-62, and 100-D-83:1 waste sites are comprised of two decision units for verification sampling, consisting of excavation and staging pile area. Also included were ten focused samples from excavation area. The direct contact hazard quotient and carcinogenic risk calculations for the 100-D-77, 100-D-62, and 100-D-83:1 waste sites were conservatively calculated for the entire waste sites using the greater of the statistical or maximum value for each analyte in all decision units from WCH (2013). Of the contaminants of potential concern (COPCs) for these sites, boron, hexavalent chromium, molybdenum, the detected polycyclic aromatic hydrocarbons (PAH), the detected semivolatiles (SVOC), aroclor-1260, and endosulfan sulfate require HQ and risk calculations because these analytes were detected and a Washington State or Hanford Site background value is not available. Vanadium requires HQ and risk calculations because this analyte was detected above a Washington State or Hanford Site background value. Although total petroleum hydrocarbons (diesel range extended) was detected and no background value is available, the risk associated with total petroleum hydrocarbons do not contribute to the cumulative toxicity calculation. All other site nonradionuclide COPCs were not detected or were quantified below background levels. An example of the HQ and risk calculations is presented below:

1) For example, the maximum value for boron is 1.7 mg/kg, divided by the noncarcinogenic RAG value of 7,200 mg/kg (calculated in accordance with the noncarcinogenic toxics effects formula in WAC 173-340-740[3]), is 2.4 x 10<sup>-4</sup>. Comparing this value, and all other individual values, to the requirement of <1.0, this criterion is met.

2) After the HQ calculation is completed for the appropriate analytes, the cumulative HQ can be obtained by summing the individual values. (To avoid errors due to intermediate rounding, the individual HQ values prior to rounding are used for this calculation.) The sum of the HQ values is 2.1 x 10<sup>-1</sup>. Comparing this value to the requirement of <1.0, this criterion is met.

3) To calculate the excess cancer risk, the maximum or statistical value is divided by the carcinogenic RAG value, and then multiplied by  $1 \times 10^{-6}$ . For example, the statistical value for hexavalent chromium is 0.313 mg/kg; divided by 2.1 mg/kg, and multiplied as indicated, is  $1.5 \times 10^{-7}$ . Comparing this value to the requirement of  $<1 \times 10^{-6}$ , this criterion is met.

4) After these calculations are completed for the carcinogenic analytes, the cumulative excess cancer risk is obtained by summing the individual values. The sum of the cumulative cancer risk values is 1.7 x 10<sup>-6</sup>. Comparing this value to the requirement of <1 x 10<sup>-5</sup>, this criterion is met.

# **RESULTS:**

- 1) List individual noncarcinogens and corresponding HQs >1.0: None
- 2) List the cumulative noncarcinogenic HQ >1.0: None
- 42 3) List individual carcinogens and corresponding excess cancer risk >1 x 10<sup>-6</sup>: None
- 43 4) List the cumulative excess cancer risk for carcinogens >1 x 10<sup>-5</sup>: None.

Table 1 shows the results of the calculations.

| Washington  | n Closure Hanford, Inc.                                      | CALCULA         | TION SHE      | ET             |                |           |          |
|-------------|--------------------------------------------------------------|-----------------|---------------|----------------|----------------|-----------|----------|
| Originator: | N. K. Schiffern                                              | Date:           | 07/01/13      | Calc. No.:     | 0100D-CA-V0509 | Rev.:     | 0        |
| Project:    | 100-D Area Field Remediation                                 | Job No:         | 14655         |                | J. D. Skoglie  | Date:     | 07/01/13 |
| Subject:    | 100-D-77, 100-D-62, and 100-D-Carcinogenic Risk Calculations | 33:1 Waste Site | es Direct Con | tact Hazard Qu | otient and     | Sheet No. | 3 of 4   |

Table 1. Direct Contact Hazard Quotient and Excess Cancer Risk Results for the 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites.

| Contaminant of Potential Concerna | Maximum or<br>Statistical Value <sup>a</sup><br>(mg/kg) | Noncarcinogen<br>RAG <sup>b</sup><br>(mg/kg) | Hazard<br>Quotient | Carcinogen<br>RAG <sup>b</sup><br>(mg/kg) | Carcinogen Ris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|---------------------------------------------------------|----------------------------------------------|--------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metals                            | (internet)                                              |                                              |                    | - F                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Boron                             | 1.7                                                     | 7,200                                        | 2.4E-04            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Chromium, hexavalent c            | 0.313                                                   | 240                                          | 1.3E-03            | 2.1                                       | 1.5E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Molybdenum                        | 0.51                                                    | 400                                          | 1.3E-03            |                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Vanadium                          | 113                                                     | 560                                          | 2.0E-01            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total Petroleum Hydrocarbons      |                                                         | 4.3                                          |                    |                                           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TPH - Diesel Range EXT d          | 24                                                      | 200                                          |                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Polycyclic Aromatic Hydrocarbons  | 27.000                                                  |                                              |                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Acenapthene                       | 0.19                                                    | 4,800                                        | 4.0E-05            | <u> </u>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Acenapthylenee                    | 0.013                                                   | 4,800                                        | 2.7E-06            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Anthracene                        | 0.39                                                    | 24,000                                       | 1.6E-05            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Benzo(a)anthracene                | 0.66                                                    |                                              |                    | 1.37                                      | 4.8E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Benzo(a)pyrene                    | 0.033                                                   |                                              |                    | 0.137                                     | 2.4E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Benzo(b)fluoranthene              | 0.50                                                    |                                              |                    | 1.37                                      | 3.6E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Benzo(ghi)perylene <sup>e</sup>   | 0.32                                                    | 2,400                                        | 1.3E-04            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Benzo(k)fluoranthene              | 0.18                                                    |                                              |                    | 1.37                                      | 1.3E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Chrysene                          | 0.56                                                    |                                              |                    | 13.7                                      | 4.1E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dibenz(a,h)anthracene             | 0.092                                                   |                                              |                    | 1.37                                      | 6.7E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fluoranthene                      | 1.2                                                     | 3,200                                        | 3.8E-04            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Fluorene                          | 0.25                                                    | 3,200                                        | 7.8E-05            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Indeno(1,2,3-cd) pyrene           | 0.30                                                    |                                              |                    | 1.37                                      | 2.2E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Phenanthrene <sup>e</sup>         | 1.2                                                     | 24,000                                       | 5.0E-05            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pyrene                            | 1.3                                                     | 2,400                                        | 5.4E-04            |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Semivolatiles                     |                                                         |                                              | Maria Carabana     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2-Methylnaphthalene               | 0.12                                                    | 320                                          | 3.8E-04            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Carbazole                         | 0.57                                                    |                                              |                    | 50                                        | 1.1E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dibenzofuran                      | 0.34                                                    | 160                                          | 2.1E-03            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Polychlorinated Biphenyls         |                                                         | L. Frank                                     | Teration .         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Aroclor-1260                      | 0.0086                                                  |                                              |                    | 0.5                                       | 1.7E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pesticides                        | - 100 F                                                 |                                              |                    | AN                                        | 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 July 1 |
| Endosulfan sulfate                | 0.00033                                                 | 480                                          | 6.9E-07            | -                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Totals                            |                                                         |                                              | 564. 4. 7 (        |                                           | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cumulative Hazard Quotient:       |                                                         |                                              | 2.1E-01            |                                           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Cumulative Excess Cancer Risk:    |                                                         |                                              |                    |                                           | 1.7E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

35 Note:

2

42 43

41

36

37

38

44 45

<sup>-- =</sup> not applicable

RAG = remedial action goal

<sup>&</sup>lt;sup>a</sup> = From WCH (2013). Method 8310 (PAH) results were used in place of method 8270 (SVOA) when similar analytes were detected.

b = Value obtained from the RDR/RAWP (DOE-RL 2009b) or Washington Administrative Code (WAC) 173-340-740(3), Method B, 1996, unless otherwise noted.

<sup>39 ° =</sup> Value for the carcinogen RAG calculated based on the inhalation exposure pathway (WAC) 173-340-750(3), 1996.

<sup>40</sup> d=The risk associated with total petroleum hydrocarbons do not contribute to the cumulative toxicity calculation.

<sup>&</sup>lt;sup>e</sup>=Toxicity data for these chemicals are not available. The cleanup levels are based on use of surrogate chemicals. acenapthylene surrogate: acenapthene; benzo(ghi)perylene surrogate: pyrene; phenanthrene surrogate: anthracene.

| Washington  | n Closure Hanford, Inc.                                                                                         | CALCULA | TION SHE | ET         |               | _   |           |          |
|-------------|-----------------------------------------------------------------------------------------------------------------|---------|----------|------------|---------------|-----|-----------|----------|
| Originator: | N. K. Schiffern                                                                                                 | Date:   | 07/01/13 | Calc. No.: | 0100D-CA-V05  | 09  | Rev.:     | 0        |
| Project:    | 100-D Area Field Remediation                                                                                    | Job No: | 14655    | Checked:   | J. D. Skoglie | k _ | Date:     | 07/01/13 |
| Subject:    | 00-D-77, 100-D-62, and 100-D-83:1 Waste Sites Direct Contact Hazard Quotient and Carcinogenic Risk Calculations |         |          |            |               |     | Sheet No. | 4 of 4   |

# **CONCLUSION:**

- This calculation demonstrates that the 100-D-77, 100-D-62, and 100-D-83:1 waste sites meet the
- 4 requirements for the direct contact hazard quotients and excess carcinogenic risk as identified in the
- 5 RDR/RAWP (DOE-RL 2009b) and SAP (DOE-RL 2009a).

Acrobat 8.0

# **CALCULATION COVER SHEET**

| Projec  | t Title: 100-D F                      | Job No.                                  | 14655                                                |                                                                   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|---------------------------------------|------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area:   | 100-D                                 |                                          | <del>_</del> ,                                       |                                                                   |                            | 2,500 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Discipl | ine: Environ                          | nental                                   | Calcul                                               | lation No: _010                                                   | 0D-CA-V0510                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Subject |                                       | 0-D-62, and 100-l<br>for Protection of C |                                                      | es Hazard Quot                                                    | ient and Carcinog          | enic Risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Compu   | ter Program: Ex                       | ccel                                     | Program                                              | No: Excel 20                                                      | 03                         | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |
| Commit  | The aftached calc                     | should be used in conjunct               | ted to document complian tion with other relevant de | nce with established cle<br>ocuments in the admini-<br>Superseded |                            | roided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rev.    | Sheet Numbers                         | eet Numbers Originator Ch                |                                                      | Reviewer                                                          | Approval                   | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0       | Cover = 1<br>Summary = 3<br>Total = 4 | N. K. Schiffern N. K. Schiffern          | C. H. Dobie                                          | I. D. Skoglie                                                     | D. F. Obenauer D. J. Olina | 10/14/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                       | SUM                                      | IMARY OF I                                           | REVISION                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                                       |                                          |                                                      |                                                                   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

WCH-DE-018 (05/08/2007)

DE01-437.03

CALCULATION SUPER

|   | washingto   | i Closure Hamord, Inc.                                                    |         | THOM SITE                                                                            | 31         | _              |       |          |  |  |
|---|-------------|---------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------|------------|----------------|-------|----------|--|--|
| ſ | Originator: | N. K. Schiffern M                                                         | Date:   | 7/2/2013                                                                             | Calc. No.: | 0100D-CA-V0510 | Rev.: | 0        |  |  |
| ſ | Project:    | 100-D Area Field Remediation                                              | Job No: | 14655                                                                                | Checked:   | C. H. Dobie    | Date: | 7/2/2013 |  |  |
|   | Subject:    | 100-D-77, 100-D-62, and 100-D-83:<br>Calculation for Protection of Ground |         | 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Hazard Quotient and Carcinogenic Risk |            |                |       |          |  |  |

### **PURPOSE:**

Washington Closura Hanford Inc.

Provide documentation to support the calculation of the hazard quotient (HQ) and excess carcinogenic risk associated with soil contaminant levels compared to soil cleanup levels for protection of groundwater for the 100-D-77, 100-D-62, and 100-D-83:1 waste sites. In accordance with the remedial action goals (RAGs) in the remedial design report/remedial action work plan (RDR/RAWP) (DOE-RL 2009), the following criteria must be met:

- 1) An HQ of <1.0 for all individual noncarcinogens
- 2) A cumulative HQ of <1.0 for noncarcinogens
- 3) An excess cancer risk of <1 x 10<sup>-6</sup> for individual carcinogens
- 4) A cumulative excess cancer risk of  $<1 \times 10^{-5}$  for carcinogens.

## **GIVEN/REFERENCES:**

1) BHI, 2005, 100 Area Analogous Sites RESRAD Evaluation, Calculation No. 0100X-CA-V0050 Rev 0, Bechtel Hanford, Inc., Richland, Washington.

2) DOE-RL, 2009, Remedial Design Report/Remedial Action Work Plan for the 100 Areas, DOE/RL-96-17, Rev. 6, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

3) WAC 173-340, "Model Toxics Control Act - Cleanup," Washington Administrative Code, 1996.

4) WCH, 2013, Remaining Sites Verification Package for the 100-D-62, 183-DR Headhouse Septic Tank; 100-D-77, 183-DR Acid Facility; 100-D-83:1, 183-DR Acid Addition Pipeline, Attachment to Waste Site Reclassification Forms 2013-077, 2013-078, 2013-079, Washington Closure Hanford, Inc., Richland, Washington.

#### **SOLUTION:**

 Generate a HQ for each noncarcinogenic constituent detected above background in soil and with a K<sub>d</sub> less than that required to show no migration to groundwater in 1,000 years using the RESRAD generic site model (BHI 2005).

2) Sum the HQs and compare this value to the cumulative HQ of <1.0.

3) Generate an excess cancer risk value for each carcinogenic constituent detected above background in soil and with a K<sub>d</sub> less than that required to show no migration to groundwater in 1,000 years using the RESRAD generic site model (BHI 2005).

4) Sum the excess cancer risk value(s) and compare it to the cumulative cancer risk of  $< 1 \times 10^{-5}$ .

| w ashington | n Closure Hanford, Inc.      | CALCULA                                                                                                                        | TION SHE | <u> </u>   |                |       |          |
|-------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------------|-------|----------|
| Originator: | N. K. Schiffern AQ           | Date:                                                                                                                          | 7/8/2013 | Calc. No.: | 0100D-CA-V0510 | Rev.: | 0        |
| Project:    | 100-D Area Field Remediation | Job No:                                                                                                                        | 14655    | Checked:   | C. H. Dobie    | Date: | 7/8/2013 |
| Subject:    |                              | 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites Hazard Quotient and Carcinogenic Risk Calculation for Protection of Groundwater |          |            |                |       |          |

#### **METHODOLOGY:**

The 100-D-77, 100-D-62, and 100-D-83:1 waste sites were divided into two decision units for the purpose of verification sampling; excavation and staging pile area. Also included were ten focused samples from excavation samples. Hazard quotient and carcinogenic risk calculations for potential impact to groundwater at the 100-D-77, 100-D-62, and 100-D-83:1 waste sites were conservatively calculated for the entire waste sites using the greater of the statistical or maximum value for each analyte in all decision units from the 95% UCL calculation (WCH 2013). Based on this model and a vadose zone of approximately 16.0 m (52.5ft) thickness, a K<sub>d</sub> of 4.6 or greater is required to show no predicted migration to groundwater in 1,000 years. The carbazole result from sample location EXC-3 was excluded from the calculation as discussed in the RSVP (WCH 2013). Of the contaminants of potential concern (COPCs) for these sites, boron, hexavalent chromium, 2-methylnaphthalene, and endosulfan sulfate are included because no Washington State or Hanford background value has been established and the distribution coefficients are less than that necessary to show no migration to groundwater in 1,000 years using the generic site RESRAD model (BHI 2005). All other site nonradionuclide COPCs were not detected, quantified below background levels, or have a K<sub>d</sub> greater than or equal to 4.6. An example of the HQ and risk calculations for soil constituents with a potential impact to groundwater is presented below:

1) The hazard quotient is defined as the ratio of the dose of a substance obtained over a specified time (mg/kg/day) to a reference dose for the same substance derived over the same specified time (mg/kg/day). The hazard quotient can also be calculated as the ratio of the concentration in soil (maximum or statistical value) (mg/kg) to the soil RAG (mg/kg) for protection of groundwater, where the RAG is the groundwater cleanup level (mg/L) (calculated with, and related to the hazard quotient through, WAC 173-340-720(3)(a)(ii)(A), 1996) x 100 x 1 mg/1000 mg (conversion factor). This is based on the "100 times rule" of WAC 173-340-740(3)(a)(ii)(A) (1996). For example, the maximum value for boron of 1.7 mg/kg, divided by the noncarcinogenic RAG value of 320 mg/kg is 5.3 x 10<sup>-3</sup>. Comparing this value to the requirement of <1.0, this criterion is met.

2) After the HQ calculation is completed for the appropriate analytes, the cumulative HQ can be obtained by summing the individual values. (To avoid errors due to intermediate rounding, the individual HQ values prior to rounding are used for this calculation.) The cumulative HQ for the 100-D-77, 100-D-62, and 100-D-83:1 waste sites is 1.1 x 10<sup>-1</sup>. Comparing this value to the requirement of <1.0, this criterion is met.

3) To calculate the excess cancer risk, the maximum or statistical value is divided by the carcinogenic RAG value, and then multiplied by 1 x 10<sup>-6</sup>. There were not any detected constituents with a carcinogenic RAG associated with the 100-D-77, 100-D-62, and 100-D-83:1 waste sites. Therefore, the requirement of <1 x 10<sup>-6</sup> is met. The criterion for cumulative excess cancer risk for carcinogens of <1 x 10<sup>-5</sup> is also met.

4) The soil cleanup RAGs for protection of groundwater are based on the "100 times" provision in WAC 173-340-740(3)(a)(ii)(A). WAC 173-340-740(3)(a)(ii)(A) (1996) provides the "100 times rule" but also states "unless it can be demonstrated that a higher soil concentration is protective of ground water at the site." When the "100 times rule" values are exceeded, RESRAD was used to demonstrate that higher soil concentrations may be protective of groundwater.

| Washington  | n Closure Hanford, Inc.                                                                                                        | CALCULA | TION SHE | ET         |                |       |          |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|---------|----------|------------|----------------|-------|----------|
| Originator: | N. K. Schiffern M                                                                                                              | Date:   | 7/2/2013 | Calc. No.: | 0100D-CA-V0510 | Rev.: | 0        |
| Project:    | 100-D Area Field Remediation                                                                                                   | Job No: | 14655    | Checked:   | C. H. Dobie CL | Date: | 7/2/2013 |
| Subject:    | 100-D-77, 100-D-62, and 100-D-83:I Waste Sites Hazard Quotient and Carcinogenic Risk Calculation for Protection of Groundwater |         |          |            | Sheet No       |       |          |

#### **RESULTS:**

1 2 3

4

5

- 1) List individual noncarcinogens and corresponding HQs >1.0: None
- 2) List the cumulative noncarcinogenic HQ >1.0: None
- 3) List individual carcinogens and corresponding excess cancer risk >1 x 10<sup>-6</sup>: None
- 4) List the cumulative excess cancer risk for carcinogens >1 x 10<sup>-5</sup>: None.

6 7 8

Table 1 shows the results of the calculations.

10 11 12

13

1 4

9

# Table 1. Hazard Quotient and Excess Cancer Risk Results for the 100-D-77, 100-D-62, and 100-D-83:1 Waste Sites.

| 14 |
|----|
| 15 |
| 16 |
| 17 |
| 18 |
| 19 |
| 20 |
| 21 |
| 22 |
| 23 |
| 24 |
| 25 |
|    |

| Contaminants of Potential Concerna | Maximum or<br>Statistical Value <sup>a</sup><br>(mg/kg) | Noncarcinogen<br>RAG <sup>b</sup><br>(mg/kg) | Hazard<br>Quotient | Carcinogen<br>RAG <sup>b</sup><br>(mg/kg) | Carcinogen<br>Risk                       |
|------------------------------------|---------------------------------------------------------|----------------------------------------------|--------------------|-------------------------------------------|------------------------------------------|
| Metals                             |                                                         |                                              |                    |                                           |                                          |
| Boron                              | 1.7                                                     | 320                                          | 5.3E-03            |                                           |                                          |
| Chromium, hexavalent               | 0.313                                                   | 4.8                                          | 6.5E-02            |                                           |                                          |
| Semivolatiles                      |                                                         |                                              |                    |                                           |                                          |
| 2-Methylnaphthalene                | 0.12                                                    | 3.2                                          | 3.8E-02            |                                           |                                          |
| Pesticides                         |                                                         |                                              |                    | a a a                                     | 1 10 10 10 10 10 10 10 10 10 10 10 10 10 |
| Endosulfan (I, II, sulfate)        | 0.00033                                                 | 9.6                                          | 3.4E-05            |                                           |                                          |
| Totals                             |                                                         |                                              |                    |                                           |                                          |
| Cumulative Hazard Quotient:        |                                                         |                                              | 1.1E-01            |                                           |                                          |
| Cumulative Excess Cancer Risk:     |                                                         |                                              |                    |                                           | 0.0E+00                                  |
| Notes:                             |                                                         |                                              |                    |                                           | 0.00100                                  |

26  $^{4}$  = From WCH (2013). 27

b = Value obtained from the Cleanup Levels and Risk Calculations (CLARC) database using Groundwater, Method B, results and the "100 times" model.

-- = not applicable

RAG = remedial action goal

31 32 33

28

29

30

#### CONCLUSION:

34 35 36

This calculation demonstrates that the 100-D-77, 100-D-62, and 100-D-83:1 waste sites meet the requirements for the hazard quotients and excess carcinogenic risk for protection of groundwater as identified in the RDR/RAWP (DOE-RL 2009).

38 39

37

# APPENDIX D DATA QUALITY ASSESSMENT

# APPENDIX D

## DATA QUALITY ASSESSMENT

A data quality assessment (DQA) was performed to compare the verification sampling approach and resulting analytical data with the sampling and data requirements specified in the site-specific sample design (WCH 2013c). This DQA was performed in accordance with site-specific data quality objectives found in the 100 Area Remedial Action Sampling and Analysis Plan (SAP) (DOE-RL 2009).

A review of the sample design (WCH 2013d), the field logbooks (WCH 2012a, 2013a, 2013b, 2013c), and applicable analytical data packages has been performed as part of this DQA. All samples were collected and analyzed per the sample design. To ensure quality data, the SAP data assurance requirements and the data validation procedures for chemical analysis and radiochemical analysis (BHI 2000) are used as appropriate. This review involves evaluation of the data to determine if they are of the right type, quality, and quantity to support the intended use (i.e., closeout decisions). The DQA completes the data life cycle (i.e., planning, implementation, and assessment) that was initiated by the data quality objectives process (EPA 2006).

Verification sample data collected at the 100-D-62, 100-D-77, and 100-D-83:1 waste sites were provided by the laboratories in nine sample delivery groups (SDGs): J01591, J01596, J01597, K3993, J01750, JP0518, ZP0004, JP0527, and JP0571. SDG J01596 was submitted for third-party validation. Major and minor deficiencies are discussed for the 100-D-62, 100-D-77, and 100-D-83:1 data set, as follows below. If no comments are made about a specific analysis, it should be assumed that no deficiencies affecting the quality of the data were found.

## **MAJOR DEFICIENCIES**

In the ion chromatograph (IC) anions analysis, the holding times for nitrate, nitrite, and orthophosphate in method 300.0 were exceeded by more than twice the limit for SDGs J01591, J01596, J01597, K3993, J01750, JP0518, ZP0004, and JP0571. All undetected nitrate, nitrite and orthophosphate results in these SDGs were qualified as rejected with "UR" flags. Rejection of the undetected nitrate, nitrite, and orthophosphate data does not hinder the evaluation of the 100-D-62, 100-D-77, and 100-D-83:1 waste sites. The only contaminant of potential concern (COPC) identified with the IC anions analysis (EPA method 300.0) in the sample design is sulfate (WCH 2013d). Nitrate is an identified COPC for verification sampling but was quantified using EPA method 353.2 (WCH 2013d). The resulting data set is sufficient for decision-making purposes.

In the IC anions analysis in SDG JP0527, the matrix spike (MS) recoveries were outside of quality control (QC) limits for nitrite (0%) and bromide (14%). All nondetected nitrite and bromide results were qualified as rejected with "UR" flags. Rejection of the undetected nitrite and bromide data does not hinder the evaluation of the 100-D-62, 100-D-77, and 100-D-83:1

waste sites. The only COPC identified with the IC anions analysis (EPA method 300.0) in the verification work instruction is sulfate (WCH 2013d). Nitrate is an identified COPC for verification sampling but was quantified using EPA method 353.2 (WCH 2013d). The resulting data set is sufficient for decision-making purposes.

#### **MINOR DEFICIENCIES**

#### **SDG J01596**

This SDG is composed of 13 statistical soil samples (J1PW81 through J1PW89 and J1PW90 through J1PW93) collected from the 100-D-62, 100-D-77, and 100-D-83:1 excavation area on September 18, 2012. This SDG includes a field duplicate pair (J1PW83/J1PW93). These samples were analyzed for inductively coupled plasma (ICP) metals, mercury, hexavalent chromium, IC anions, nitrate/nitrite, semivolatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCBs), total petroleum hydrocarbons (TPH), and pesticides. SDG J01596 was submitted for third-party validation. Minor deficiencies are as follows:

In the pesticides analysis, no MS, matrix spike duplicate (MSD), or laboratory control sample (LCS) was performed for toxaphene. The laboratory typically quantitates toxaphene but does not include toxaphene in quality assurance (QA)/QC samples. Third-party validation qualified all toxaphene results as estimated with "J" flags. Estimated data are usable for decision-making purposes.

In the ICP metals analysis the MS recoveries for aluminum (1,107%), antimony (48%), iron (1,730%), manganese (187%), and silicon (-14%) were outside of project QC limits. For aluminum, iron, and manganese, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. Antimony and silicon did not have mismatched spike and native concentrations in the MS. All antimony and silicon results were qualified as estimated with "J" flags by third-party validation. All aluminum, iron, and manganese results may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, the LCS recovery was below the QC criteria for silicon (11%). All silicon data were qualified by third-party validation as estimated with "J" flags. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, chromium was detected in the method blank (MB) at a concentration less than twice the method detection limit (MDL). Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

In the PAH analysis, the MS recoveries were outside of QC limits for acenaphthene (185%), benzo(a)anthracene (207%), fluoranthene (219%), phenanthrene (-53%), and pyrene (217%).

All associated results were qualified as estimated with "J" flags by third-party validation. Estimated data are acceptable for decision-making purposes.

In the PAH analysis, all MSD recoveries were within QC limits; however, the MS/MSD relative percent difference (RPD) calculations were above the QC limit for acenaphthene (37%), benzo(a)anthracene (46%), benzo(a)pyrene (31%), chrysene (32%), fluoranthene (61%), phenanthrene (169%), and pyrene (54%). Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. All associated results were qualified as estimated with "J" flags by third-party validation. Estimated data are acceptable for decision-making purposes.

In the SVOC analysis, the LCS recoveries were below QC limits for 3,3'-dichlorobenzidine (47%). Additionally, the MS recoveries were below QC limits for 4,6-dinitro-2-methylphenol (46%) and 2,4-dinitrophenol (33%), and the MSD recoveries were below QC limits for 2,4-dinitrophenol (49%). The MS/MSD RPD calculations were above the QC limit for 4,6-dinitro-2-methylphenol (39%) and 2,4-dinitrophenol (37%). Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. All associated results of these analytes were qualified as estimated with "J" flags by third-party validation. Estimated data are acceptable for decision-making purposes.

In the IC anions analysis, holding times were exceeded by more than twice the specified holding time for nitrate, nitrite, and orthophosphate. The nondetected results for these analytes are discussed above in the Major Deficiencies section. All detected nitrate, nitrite, and orthophosphate results were qualified as estimated with "J" flags by third-party validation. Estimated data are usable for decision-making purposes.

In the hexavalent chromium analysis, the MS recovery was below QC limits at 62%. All associated hexavalent chromium results were qualified as estimated with "J" flags by third-party validation. Estimated data are acceptable for decision-making purposes.

#### **SDG J01597**

This SDG is composed of six focused soil samples (J1PWC8 through J1PWC9 and J1PWD0 through J1PWD3) collected from the 100-D-62, 100-D-77, and 100-D-83:1 excavation area on September 18, 2012. These samples were analyzed for ICP metals, mercury, hexavalent chromium, IC anions, nitrate/nitrite, SVOCs, PAH, PCBs, TPH, and pesticides. Minor deficiencies are as follows:

In the SVOC analysis, the MS and/or MSD recoveries were below project QC limits for 2,4-dinitrophenol (38% and 45%). Although not qualified for MS/MSD recovery outside of QC limits, all results associated with 2,4-dinitrophenol may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the pesticide analysis, there was no MS, MSD, or LCS for toxaphene. The laboratory typically quantitates toxaphene but does not include toxaphene in QA/QC samples.

Although not qualified for the lack of MS, MSD, or LCS analyses, all toxaphene results may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, the LCS recovery was below the QC project criteria for silicon (8%). Although not qualified for the LCS recovery outside of QC limits, all silicon data may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, iron was detected in the MB at a concentration less than three times the MDL. Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

In the ICP metals analysis, the MS recoveries for aluminum (1,116%), antimony (56%), iron (2,444%), manganese (150%), and silicon (30%) were outside of QC limits. For aluminum, iron, and manganese, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. Antimony and silicon did not have mismatched spike and native concentrations in the MS. Although not qualified for MS recoveries outside of QC limits, all associated results of these analytes may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the ICP metals analysis, the RPD calculation from the laboratory duplicate analysis was above the QC limit for molybdenum (54%). Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. Although not qualified for RPD calculation outside of QC limits, all molybdenum results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the IC anions analysis, holding times were exceeded by more than twice the specified holding time for nitrate, nitrite, and orthophosphate. The nondetected results for these analytes are discussed above in the Major Deficiencies section. Although not qualified for the holding time exceedance, all detected nitrate, nitrite, and orthophosphate results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the nitrate/nitrite analysis, the RPD calculated from the laboratory duplicate analysis was above the QC limit at 46%. Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. Although not qualified for RPD calculation outside of QC limits, all nitrate/nitrite results may be considered estimated. Estimated data are acceptable for decision-making purposes.

#### **SDG K3993**

This SDG is composed of one soil sample (J1PWF8) collected from the 100-D-62, 100-D-77, and 100-D-83:1 excavation area. This SDG includes the split sample associated with sample J1PW83. The sample was analyzed for ICP metals, mercury, hexavalent chromium, IC anions, nitrate/nitrite, SVOCs, PAH, PCBs, TPH, and pesticides. Minor deficiencies are as follows:

In the SVOC analysis, the LCS recoveries were below QC limits for 10 of the 64 analytes. Although not qualified for LCS recoveries outside of QC limits, all results associated with these analytes may be considered estimated. Estimated data are acceptable for decision-making purposes.

The MS recoveries were outside of QC limits for 2,4-dinitrophenol (42%), 4-chloroaniline (44%), hexachlorocyclopentadiene (13%), and pentachlorophenol (35%). The MSD recoveries were outside of QC limits 2,4-dinitrophenol (42%), fluoranthene (158%), hexachlorocyclopentadiene (16%), and phenanthrene (161%). Elevated concentrations of target analytes were present in the sample. Although not qualified for MS/MSD recoveries outside of QC limits, all 2,4-dinitrophenol, 4-chloroaniline, fluoranthene, hexachlorocyclopentadiene, and pentachlorophenol results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the SVOC analysis, the MS/MSD RPD calculation was above the QC limits for 2,4,6-trichlorophenol (37%), pentachlorophenol (37%), and phenanthrene (31%). Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. Although not qualified for MS/MSD RPD calculations outside of QC limits, the 2,4,6-trichlorophenol, pentachlorophenol, and phenanthrene results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the pesticide analysis, there was no MS, MSD, or LCS for toxaphene. The laboratory typically quantitates toxaphene but does not include toxaphene in QA/QC samples. Although not qualified for the lack of MS, MSD, or LCS analyses, all toxaphene results may be considered estimated. Estimated data are usable for decision-making purposes.

In the pesticides analysis, the MSD recoveries were outside of QC limits for methoxychlor (230%). The MS/MSD RPD calculation was above the QC limit for methoxychlor (73.7%). Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. Although not qualified for MSD recovery or RPD calculations outside of QC limits, all methoxychlor results may be considered estimated. Estimated data are acceptable for decision-making purposes

In the PAH analysis, the MS and MSD recoveries were outside of QC limits for 7 and 6, respectively, of the 16 analytes. The MS/MSD RPD calculations were outside of QC limits for 11 of the 16 analytes. Elevated concentrations of target analytes were present in the sample. Although not qualified for MS/MSD recoveries or RPD calculations outside of QC limits, all associated results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the ICP metals analysis, the LCS recovery was above the QC project criteria for aluminum (140%). Although not qualified for the LCS recovery outside of QC limits, all silicon data may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, magnesium was detected in the MB at a concentration less than one-tenth the reporting limit (RL). Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

In the ICP metals analysis the MS recoveries for aluminum (444%), antimony (26.9%), iron (530%), and silicon (65.1%) were outside of QC limits. For aluminum and iron, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. Antimony and silicon did not have mismatched spike and native concentrations in the MS. To confirm quantitation, a post-digestion spike (PDS) and serial dilution was prepared for all subject analytes. Recovery in the PDS was acceptable for all analytes except iron (48.6%). Although not qualified for MS recoveries outside of QC limits, all associated results of these analytes may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the IC anions analysis, holding times were exceeded by more than twice the specified holding time for nitrate, nitrite, and orthophosphate. The nondetected results for these analytes are discussed above in the Major Deficiencies section. Although not qualified for the holding time exceedance, all detected nitrate, nitrite, and orthophosphate results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the IC anions analysis, sulfate was detected in the MB at a concentration less than twice the limit of detection. Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

#### **SDG J01750**

This SDG is composed of one statistical (J1RJ77) and one focused (J1RJ78) soil sample collected from the 100-D-62, 100-D-77, and 100-D-83:1 excavation area on March 15, 2013. These samples were analyzed for ICP metals, mercury, hexavalent chromium, IC anions, nitrate/nitrite, SVOCs, PAH, PCBs, TPH, and pesticides. Minor deficiencies are as follows:

In the SVOC analysis, the LCS recoveries were below project QC limits for 4-chloroaniline (42%) and 3,3'dichlorobenzidine (36%). All 4-chloroaniline and 3,3'dichlorobenzidine results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the pesticide analysis, there was no MS, MSD, or LCS for toxaphene. The laboratory typically quantitates toxaphene but does not include toxaphene in QA/QC samples. Although not qualified for the lack of MS, MSD, or LCS analyses, all toxaphene results may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, the LCS recovery was below the QC project criteria for silicon (7%). All silicon data may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, barium and chromium were detected in the MB at a concentration less than three times the MDL. Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

In the ICP metals analysis, the MS recoveries for aluminum (943%), antimony (55%), iron (1,621%), manganese (203%), and silicon (31%) were outside of QC limits. For aluminum, iron, and manganese, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. Antimony and silicon did not have mismatched spike and native concentrations in the MS. Although not qualified for MS recoveries outside of QC limits, all associated results of these analytes may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the IC anions analysis, holding times were exceeded by more than twice the specified holding time for nitrate, nitrite, and orthophosphate. The nondetected results for these analytes are discussed above in the Major Deficiencies section. Although not qualified for the holding time exceedance, all detected nitrate, nitrite, and orthophosphate results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the pesticides analysis, the MSD recovery was outside of QC limits for beta-BHC (24%). The MS/MSD RPD calculations were above the QC limit for beta-BHC (58%), delta-BHC (32%), endosulfan sulfate (62%), and endrin aldehyde (39%). Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. Although not qualified for MSD recovery or MS/MSD RPD calculations outside of QC limits, all beta-BHC, delta-BHC, endosulfan sulfate, and endrin aldehyde results may be considered estimated. Estimated data are acceptable for decision-making purposes.

#### **SDG JP0518**

This SDG was originally composed of 11 statistical soil samples (J1R641 through J1R648, J1R650, J1R651, and J1R653) collected from 10 of 12 sample locations at the staging pile area (SPA) on April 8, 2013. This SDG includes a field duplicate pair (J1R645/J1R653).

On April 8, 2013, 10 of the 12 SPA locations were sampled. After the sample collection, it was determined that 5 of the 12 SPA sample locations (SPA-8 through SPA-12) required new statistical locations. However, samples had been collected at three of the five locations (SPA-8, SPA-10, and SPA-11). After determining that new sample locations were needed, the laboratory was contacted to cancel the analyses for the three samples collected at SPA-8, SPA-10, and SPA-11 (J1R648, J1R650, and J1R651). All analyses except for hexavalent chromium were successfully canceled. All samples in the SDG were analyzed for hexavalent chromium. Samples J1R641 through J1R647 and J1R653 were analyzed for ICP metals, mercury, IC anions, nitrate/nitrite, SVOCs, PAH, PCBs, TPH, and pesticides. In addition, one equipment blank (J1R654) was analyzed for ICP metals, mercury, and SVOCs. Minor deficiencies are as follows:

In the SVOC analysis, LCS recoveries were below project QC limits for 4-chloroaniline (45%) and 3,3'-dichlorobenzidine (48%). Although not qualified for MS/MSD recovery outside of QC limits, all results associated with 4-chloroaniline and 3,3'-dichlorobenzidine may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the pesticide analysis, there was no MS, MSD, or LCS for toxaphene. The laboratory typically quantitates toxaphene but does not include toxaphene in QA/QC samples. Although not qualified for the lack of MS, MSD, or LCS analyses, all toxaphene results may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, the LCS recovery was below the QC project criteria for silicon (5%). Although not qualified for the LCS recovery outside of QC limits, all silicon data may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, aluminum, calcium, iron, and manganese were detected in the MB at a concentration less than twice the MDL. Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

In the ICP metals analysis, the MS recoveries for aluminum (1,010%), antimony (56%), iron (2,282%), manganese (284%), and silicon (23%) were outside of QC limits. For aluminum, iron, and manganese, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. Antimony and silicon did not have mismatched spike and native concentrations in the MS. Although not qualified for MS recoveries outside of QC limits, all associated results of these analytes may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the ICP metals analysis, the RPD calculations from the laboratory duplicate analysis were above the QC limit for chromium (59%) and nickel (51%). Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. Although not qualified for RPD results outside of QC limits, all chromium and nickel data may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the mercury analysis, the RPD calculation from the laboratory duplicate analysis was above the QC limit at 31%. Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. Although not qualified for RPD results outside of QC limits, all mercury data may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the IC anions analysis, holding times were exceeded by more than twice the specified holding time for nitrate, nitrite, and orthophosphate. The nondetected results for these analytes are discussed above in the Major Deficiencies section. Although not qualified for the holding time exceedance, all detected nitrate, nitrite, and orthophosphate results may be considered estimated. Estimated data are acceptable for decision-making purposes.

#### **SDG ZP0004**

This SDG is composed of one soil sample (J1R670) collected from the SPA area on April 8, 2013. This SDG includes the split sample associated with sample J1R645. The sample was analyzed for ICP metals, mercury, hexavalent chromium, IC anions, nitrate/nitrite, SVOCs, PAH, PCBs, TPH, and pesticides. Minor deficiencies are as follows:

In the SVOC analysis, the MS recoveries were outside of QC limits for 4,6-dinitro-2-methylphenol (48%), 2,4-dinitrophenol (30%), and hexachlorocyclopentadiene (39%). The MSD recoveries were outside of project QC limits 2,4-dinitrophenol (31%) and hexachlorocyclopentadiene (46%). Although not qualified for MS/MSD recoveries outside of QC limits, all results associated with these analytes may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the pesticide analysis, there was no MS, MSD, or LCS for toxaphene. The laboratory typically quantitates toxaphene but does not include toxaphene in QA/QC samples. Although not qualified for the lack of MS, MSD, or LCS analyses, all toxaphene results may be considered estimated. Estimated data are usable for decision-making purposes.

In the PAH analysis, the RPD calculations for the MS/MSD recoveries were outside of QC limits for benzo(a)pyrene (31%), fluoranthene (38%), phenanthrene (38%), and pyrene (48%). Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. Although not qualified for MS/MSD recovery RPD calculations outside of QC limits, the benzo(a)pyrene, fluoranthene, phenanthrene, and pyrene results may be considered estimated. Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. Estimated data are acceptable for decision-making purposes.

In the ICP metals analysis, the LCS recoveries were above the QC project criteria for aluminum (68%) and antimony (63%). Although not qualified for the LCS recovery outside of QC limits, the aluminum and antimony data may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis the MS/MSD recoveries for aluminum (135% [MSD only]), antimony (67% and 67%), barium (68% [MSD only]), calcium (56% and 168%), iron (-198% and -162%), magnesium (40% [MS only]), manganese (46% and 55%), potassium (150% and 154%), and silicon (46% [MSD only]) were outside of QC limits. For aluminum, calcium, iron, magnesium, and manganese, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. Antimony, barium, potassium, and silicon did not have mismatched spike and native concentrations in the MS. Although not qualified for MS recoveries outside of QC limits, all associated results of these analytes may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the IC anions analysis, holding times were exceeded by more than twice the specified holding time for nitrate, nitrite, and orthophosphate. The nondetected results for these analytes are discussed above in the Major Deficiencies section. Although not qualified for the holding time exceedance, all detected nitrate, nitrite, and orthophosphate results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the analysis for total nitrogen in nitrate/nitrite, contamination was detected in the MB at a concentration less than six times the MDL. Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

In the analysis for total nitrogen in nitrate/nitrite, the MS recovery was outside of QC limits at 53%. Although not qualified for the MS recovery outside of QC limits, the result for total nitrogen in nitrate/nitrite may be considered estimated. Estimated data are acceptable for decision-making purposes.

#### **SDG JP0527**

This SDG is composed of five statistical soil samples (J1RKM5 through J1RKM9) collected from the SPA on April 29, 2013. A portion of the SPA boundary had been modified, and five of the statistical sample locations (SPA-8 through SPA-12) required new statistical locations. The samples were analyzed for ICP metals, mercury, hexavalent chromium, IC anions, nitrate/nitrite, SVOCs, PAH, PCBs, TPH, and pesticides. Minor deficiencies are as follows:

In the SVOC analysis, the MS/MSD recoveries for 2,4-dinitrophenol (28% and 31%) were outside of QC limits. Although not qualified for the MS recovery outside of QC limits, all 2,4-dinitrophenol results may be considered estimated. Estimated data are usable for decision-making purposes.

In the pesticide analysis, there was no MS, MSD, or LCS for toxaphene. The laboratory typically quantitates toxaphene but does not include toxaphene in QA/QC samples. Although not qualified for the lack of MS, MSD, or LCS analyses, all toxaphene results may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, the LCS recovery was below the QC project criteria for silicon (20%). Although not qualified for the LCS recovery outside of QC limits, all silicon data may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, zinc was detected in the MB at a concentration less than twice the MDL. Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

In the ICP metals analysis, the MS recovery for aluminum (1,080%), antimony (60%), iron (1,020%), manganese (135%), and silicon (18%) were outside of QC limits. For aluminum, iron, and manganese, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the

analytical variability of the native concentration rather than a measure of the recovery from the sample. Antimony and silicon did not have mismatched spike and native concentrations in the MS. Although not qualified for MS recoveries outside of QC limits, all associated results of these analytes may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the ICP metals analysis, the RPD calculated from the laboratory duplicate analysis was above the QC limit for antimony (36%). Although not qualified for RPD results outside of QC limits, all antimony data may be considered estimated. Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. Estimated data are acceptable for decision-making purposes.

In the IC anions analysis, holding times were exceeded by less than twice the specified holding time for nitrate, nitrite, and orthophosphate. Although not qualified for the holding time exceedance, all detected nitrate, nitrite, and orthophosphate results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the IC anions analysis, the MS recoveries were outside of QC limits for nitrate (199%), nitrite (0%), chloride (604%), and bromide (14%). All nitrite and bromide results were nondetects and were qualified as rejected as discussed in the Major Deficiencies section. Although not qualified for MS recoveries outside of QC limits, all nitrate and chloride results may be considered estimated. Estimated data are acceptable for decision-making purposes.

#### **SDG JP0571**

This SDG is composed of three focused soil samples (J1RN38 through J1RN40) collected from the former 100-D-83:1 pipeline footprint on May 29, 2013. The samples were analyzed for ICP metals, mercury, hexavalent chromium, IC anions, and nitrate/nitrite. Minor deficiencies are as follows:

In the ICP metals analysis, the LCS recovery was below the QC project criteria for silicon (8%). Although not qualified for the LCS recovery outside of QC limits, all silicon data may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, the MS recoveries for aluminum (668%), antimony (55%), iron (2,923%), manganese (176%), and silicon (16%) were outside of QC limits. For aluminum, iron, and manganese, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. Antimony and silicon did not have mismatched spike and native concentrations in the MS. Although not qualified for MS recoveries outside of QC limits, all aluminum, antimony, iron, manganese, and silicon results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the ICP metals analysis, the RPD calculations from the laboratory duplicate analysis were above the QC limits for aluminum (31%), antimony (82%), arsenic (50%), calcium (46%),

copper (34%), nickel (46%), and sodium (38%). Elevated RPDs in environmental samples are generally attributed to natural heterogeneities in the sample matrix. Although not qualified for RPD results outside of QC limits, all aluminum, antimony, arsenic, calcium, copper, nickel, and sodium results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the ICP metals analysis, calcium and cobalt were detected in the MB at a concentration less than three times the MDL. Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

In the IC anions analysis, holding times were exceeded by more than twice the specified holding time for nitrate, nitrite, and orthophosphate. The nondetected results for these analytes are discussed above in the Major Deficiencies section. Although not qualified for the holding time exceedance, all detected nitrate, nitrite, and orthophosphate results may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the ICP metals analysis, the MS recovery for orthophosphate (139%) was outside of QC limits. Although not qualified for MS recoveries outside of QC limits, all orthophosphate results may be considered estimated. Estimated data are acceptable for decision-making purposes.

#### **SDG J01591**

A remediated portion of the 100-D-77 waste site, the location of the former sample room of the 183-DR Filter Building, had been inadvertently omitted from the verification sample design (WCH 2013d). A verification sample for this location was included in the verification sample design for the 100-D-50:6, 183-DR Clearwell Drain Pipelines waste site (WCH 2012b).

This SDG is composed of five focused soil samples collected on September 4, 2012. Four of the samples (J1R156 through J1R159) were collected from the 100-D-50:6 subsite excavation area and one sample (J1R160) was collected from the former 100-D-77 sample room. Samples J1R156 through J1R159 were analyzed for ICP metals, mercury, hexavalent chromium, PAH, and PCBs. Sample J1R160 was analyzed for ICP metals, mercury, hexavalent chromium, anions, nitrite/nitrate, pH, and TPH. Only results related to sample J1R160 analyses are discussed. Minor deficiencies are as follows:

In the TPH analysis, the diesel range extended and diesel range organics were detected in the MB at less than twice the MDL. Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

In the ICP metals analysis, zinc was detected in the MB at less than twice the MDL. Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

In the ICP metals analysis, the LCS recovery was below the QC project criteria for silicon (9%). Although not qualified for the LCS recovery outside of QC limits, all silicon data may be considered estimated. Estimated data are usable for decision-making purposes.

In the ICP metals analysis, the MS recoveries were outside the project acceptance criteria for aluminum (1,139%), antimony (47%), iron (2,187%), manganese (185%), and silicon (17%). For aluminum, iron, and manganese, the spiking concentration was insignificant compared to the native concentration in the sample from which the MS was prepared. The deficiency in the MS is a reflection of the variability of the native concentration rather than a measure of the recovery from the sample. Antimony and silicon did not have mismatched spike and native concentrations in the MS. Although not qualified for MS recoveries outside of QC limits, all associated results of these analytes may be considered estimated. Estimated data are acceptable for decision-making purposes.

In the ICP metals analysis, the laboratory duplicate RPD calculations for antimony (43%) and cadmium (31%) were outside of QC limits. Although not qualified for RPD results outside of QC limits, all antimony and cadmium data may be considered estimated. Estimated data are usable for decision-making purposes.

In the analysis for total nitrogen in nitrate/nitrite, contamination was detected in the MB at a concentration less than twice the MDL. Method blank contamination of this magnitude has no significant impact on the field sample results. The data are usable for decision-making purposes.

In the IC anions analysis, holding times were exceeded by more than twice the specified holding time for nitrate, nitrite, and orthophosphate. The nondetected results for these analytes are discussed above in the Major Deficiencies section. Although not qualified for the holding time exceedance, all detected nitrate, nitrite, and orthophosphate results may be considered estimated. Estimated data are acceptable for decision-making purposes.

# FIELD QUALITY ASSURANCE/QUALITY CONTROL

Relative percent difference evaluations of main sample(s) versus the laboratory duplicate(s) are routinely performed and reported by the laboratory. Any deficiencies in those calculations are reported by SDG in the previous sections.

Field QA/QC measures are used to assess potential sources of error and cross contamination of samples that could bias results. Field QA/QC samples, listed in the field logbooks (WCH 2012a, 2013b), are shown in Table D-1. The main and QA/QC sample results are presented in Appendix C.

| Table D-1. Field Quanty Assurance/Quanty Control Samples. |             |                  |              |  |  |  |
|-----------------------------------------------------------|-------------|------------------|--------------|--|--|--|
| Sample Area                                               | Main Sample | Duplicate Sample | Split Sample |  |  |  |
| EXC-3                                                     | J1PW83      | J1PW93           | J1PWF8       |  |  |  |

J1R653

Table D-1. Field Quality Assurance/Quality Control Samples.

J1R645

SPA-5

J1R670

Field duplicate samples are collected to provide a relative measure of the degree of local heterogeneity in the sampling medium, unlike laboratory duplicates that are used to evaluate precision in the analytical process. The field duplicates are evaluated by computing the RPD of the sample/duplicate pair(s) for each COPC. Relative percent differences are not calculated for analytes that are not detected in both the main and duplicate sample at more than five times the target detection limit. Relative percent differences of analytes detected at low concentrations (less than five times the detection limit) are not considered to be indicative of the analytical system performance.

Split samples are collected to provide a relative measure of the variability in the sampling, sample handling, and analytical techniques used by commercial laboratories. The field main and split samples are evaluated by computing the RPD of the split samples for each COPC to determine the usability of the verification data. The U.S. Environmental Protection Agency Contract Laboratory Program duplicate sample comparison methodology, *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review* (EPA 2004), is used as an initial test of the data from the splits. Only analytes that had values above five times the contract-required quantitation limit for both the main and split sample were compared. The calculation brief in Appendix C provides details on split pair RPD calculation. The RPD acceptance criteria for project-split samples is ≤35% (less than or equal to 35%).

The calculation brief in Appendix C provides details on duplicate and split pair evaluations and the RPD calculation.

The calculated RPDs for the field QA/QC duplicate samples were within the acceptance criteria of 30%, with the exception of acenaphthene (62.1%), benzo(a)anthracene (122.0%), benzo(a)pyrene (138.5%), benzo(b)fluoranthene (122.6%), chrysene (124.6%), fluoranthene (133.3%), phenanthrene (128.8%), and pyrene (144.4%) in the excavation area. All RPD calculations for the split analyses were within the acceptance criteria of 35% except for silicon (38.0%), acenaphthene (155.8%), benzo(b)fluoranthene (64.2%), benzo(ghi)perylene (45.4%), indeno(1,2,3-cd)pyrene (40.5%), and pyrene (35.4%) in the excavation area and silicon (165.4%) in the staging pile area. Elevated RPDs in the analysis of environmental soil samples are largely attributed to heterogeneities in the soil matrix and only in small part attributed to precision and accuracy issues at the laboratory. The data are usable for decision-making purposes.

A secondary check of the data variability is used when one or both of the samples being evaluated (main and duplicate) is less than five times the target detection limit (TDL), including undetected analytes. In these cases, a control limit of ±2 times the TDL is used (Appendix C) to indicate that a visual check of the data is required by the reviewer. In the duplicate sample analyses, TPH (diesel range); TPH (diesel range extended); beno(ghi)perylene, benzo(k)fluoranthene, dibenz(a,h)anthracene, fluorene, and indeno(1,2,3-cd)pyrene (PAH analysis); and benzo(a)anthracene, benzo(b)fluoranthene, chrysene, fluoranthene, phenanthrene, and pyrene (SVOC analysis) in the excavation area required this check. In the split samples analyses, TPH (diesel range); acenaphthylene and dibenz(a,h)anthracene (PAH analysis); and benzo(a)anthracene, benzo(b)fluoranthene, chrysene, fluoranthene, phenanthrene, and pyrene (SVOC analysis) in the excavation area required this check. A visual

inspection of all of the data is also performed. No additional major or minor deficiencies are noted. The data are usable for decision-making purposes.

# Summary

Limited, random, or sample matrix-specific influenced batch QC issues such as those discussed above are a potential for any analysis. The number and types seen in these data sets are within expectations for the matrix types and analyses performed. The DQA review of the 100-D-62, 100-D-77, and 100-D-83:1 waste site verification sampling data found that the analytical results are accurate within the standard errors associated with the analytical methods, sampling, and sample handling. The DQA review for the 100-D-62, 100-D-77, and 100-D-83:1 waste site concludes that the reviewed data are of the right type, quality, and quantity to support the intended use. The analytical data were found acceptable for decision-making purposes.

The verification sample analytical data are stored in the Environmental Restoration project-specific database prior to being submitted for inclusion in the Hanford Environmental Information System database. The verification sample analytical data are also summarized in Appendix C.

#### REFERENCES

- BHI, 2000a, *Data Validation Procedure for Chemical Analysis*, BHI-01435, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- DOE-RL, 2009, 100 Area Remedial Action Sampling and Analysis Plan, DOE/RL-96-22, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- EPA, 2004, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, Final, OSWER 9240.1-45/EPA 540-R-04-004, U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, Washington, D.C.
- EPA, 2006, Guidance on Systematic Planning using the Data Quality Objectives Process, EPA QA/G-4, U.S. Environmental Protection Agency, Office of Environmental Information, Washington, D.C.
- WCH, 2012a, 100-D Field Remediation Project Sampling and Field Notes, Logbook EL-1607-14, pp. 69-71 and 86-89, Washington Closure Hanford, Richland, Washington.
- WCH, 2012b, Work Instruction for Verification Sampling of the 100-D-50:6, 183-DR Clearwell Drain Pipelines Waste Site, 0100D-WI-G0109, Rev. 0, Washington Closure Hanford, Richland, Washington.

- WCH, 2013a, 100-D Field Remediation Miscellaneous Sampling Activities, Logbook EL-1662-01, pp. 76-78, Washington Closure Hanford, Richland, Washington.
- WCH, 2013b, 100-D Field Remediation Project Sampling and Field Notes, Logbook EL-1607-17, pp. 50-52 and 78-82, Washington Closure Hanford, Richland, Washington.
- WCH, 2013c, 100-D Field Remediation Project Sampling and Field Notes, Logbook EL-1607-18, pp. 37-39, Washington Closure Hanford, Richland, Washington.
- WCH, 2013d, Work Instruction for Verification Sampling of the 100-D-77, 183-DR Water Treatment Facility; and the 100-D-62, 183-DR Headhouse Septic Tank; and 100-D-83:1 183-DR Acid Addition Pipelines Waste Sites, 0100D-WI-G0117, Rev. 2, Washington Closure Hanford, Richland, Washington.